Studies on the Isotherm, Kinetics and Thermodynamic Aspects of Dye Adsorption from Aqueous Solution by Using Layered Double Hydroxide Based Sorbents

A Thesis

Submitted to Bodoland University for the Degree of Doctor of Philosophy in the Department of Chemistry under the Faculty of Science and Technology

Submitted by Deepmoni Brahma Department of Chemistry Bodoland University, Kokrajhar-783370, India 2025

Declaration

I, Deepmoni Brahma, do hereby, declare that the thesis entitled *Studies on the Isotherm, Kinetics and Thermodynamic Aspects of Dye Adsorption from Aqueous Solution by Using Layered Double Hydroxide Based Sorbents* is the result of my own research work, which has been carried out under the supervision of Dr. Hemaprobha Saikia, Assistant Professor, Department of Chemistry, Bodoland University. Also, I would like to declare that neither the thesis nor any part thereof has been submitted to any other University/Institution for a research degree/ diploma.

Date: 2/01/2025 Place- Kokrajhar

Deepmoni Boalina

Deepmoni Brahma Department of Chemistry Bodoland University Kokrajhar-783370

DEPARTMENT OF CHEMISTRY BODOLAND UNIVERSITY DEBORGAON, KOKRAJHAR, BTR ASSAM, INDIA-783370

Dr. Hemaprobha Saikia, MSc., Ph.D. Assistant Professor

Contact No. 9435118405 Email: Saikiahemaprobha@gmail.com

Certificate

This is certified that Mr. Deepmoni Brahma, a research scholar at Department of Chemistry, Bodoland University, has carried out this research work, entitled "Studies on the Isotherm, Kinetics and Thermodynamic Aspects of Dye Adsorption from Aqueous Solution by Using Layered Double Hydroxide Based Sorbents" for his Doctor of Philosophy degree under my supervision.

To the best of my knowledge, this work in the present form or in part in any other form has not been submitted anywhere for an award of any degree.

Dr. Hemapproble Sailer Dr. Hemapproble Saikia 211/2025

Dr. Hemaprobha Saikia Supervisor Assistant Professor, Department of Chemistry Bodoland University

Dedication

This research work is dedicated to my family members, whose unconditional love and support served as the motivating force behind my academic endeavours. His/her encouragement and faith in me have been a continuous source of motivation and inspiration, and I will be eternally grateful for his or her advice and expertise.

I would also like to dedicate this work to my mentor, professors and colleagues, whose expertise and assistance have helped shape my research abilities and knowledge. His or her guidance has been crucial to my career and educational growth.

Finally, I would like to devote my research to everyone who has been influenced by the subject of this study. I believe that this work will help to increase knowledge and understanding of this research field, resulting in positive change and progress.

Lastly, we appreciate you all for your continuous support and encouragement during this research work.

I am delighted to take this opportunity to express my heartfelt gratitude to all people who provided important assistance and contributions to this thesis.

At the outset, I would like to convey my deepest appreciation to my supervisor Dr. Hemaprobha Saikia, Assistant Professor, Department of Chemistry, Bodoland University, for her tremendous assistance, unwavering support, smart suggestions, and kind encouragement throughout my research journey. I shall be eternally thankful to her for all of her contributions and efforts during my study period, which enabled me to complete my research work.

I would like to express my sincere thanks to my Research Advisory Committee members, Prof. Hilloljyoti Singha, Department of Zoology, Bodoland University, and Prof. Kusum Kumar Bania, Department of Chemical Science, Tezpur University, for their crucial advice and suggestions throughout the course of my research. I am also thankful to Academic Registrar, Bodoland University, and Dean of Faculty of Science and Technology for their valuable suggestions. I also thank Prof. Sanjay Basumatary, Head of the Chemistry Department, Bodoland University for extending all the facilities for my research work. I am also thankful to Lab Assistant, Parmeswar Basumatary of Chemistry Department for his help during my time in Bodoland University. With great affection, I gratefully appreciate all of my teachers for their significant contributions to shaping my destiny. Their love, wisdom, and encouragement have inspired to get this far.

I am also thankful to institutes like CIF, IIT Guwahati, SAIF, NEHU, Guwahati University, Cotton University, and IIT Kanpur for providing instrumental facility for characterization of materials. I also acknowledge our institute Bodoland University for facilitating instruments and all the necessary materials and equipment required for our research works.

I want to offer profound appreciation to all of my friends for their encouragement and support. I express my gratitude to my labmates Dr. Debasis Borah, Dipanwita Basak, Mandira Debnath, Harshajit Nath, Manash Pratim Barman, and special thanks to my friend Khemnath Patir, Dipak Chamlagai, Nabajeet Changmai, and Dr. Sangeeta Agarwal for their constant support during my work. Last but certainly not least, I thank my parents for providing me with strength, good health, skills, and determination in my life.

Table of Contents

Declaration	i
Certificate	ii
Dedication	iii
Acknowledgment	iv v-ix
Table of contents	
List of Tables	Х
List of Figures	xi-xiv
Abstract	xv-xvi
Chapter –I: Introduction and Literature Review	1-55
I.1.1 Introduction	1
 I.1.2 Dyes chemical structure and properties I.1.2.1 Classification of Dyes I.1.3 Dye as pollutants I.1.3.1 Harmful impacts on human health I.1.3.2 Impacts on aquatic life I.1.3.3 Guidelines and legislation on textile effluents 	5 7-10 11 12-13 14-16 17-18
 I.1.4 Different techniques for dye remediation I.1.4.1.1 Biological treatment method I.1.4.1.2 Phytoremediation method I.1.4.2.1 Chemical treatment method I.1.4.2.2 Oxidation I.1.4.2.3 Ozonation I.1.4.2.4 Fenton process I.1.4.2.5 Photochemical process I.1.4.2.6 Electrochemical process I.1.4.3 Physical Treatment method I.1.4.3.1 Ion exchange method I.1.4.3.2 Coagulation/Flocculation I.1.4.3.3 Adsorption I.1.4.3.4 Membrane Filtration 	$ \begin{array}{c} 19\\ 20\\ 21\\ 21\\ 22\\ 22\\ 22-23\\ 23-24\\ 24\\ 25\\ 25\\ 25\\ 26\\ 26\\ 26\\ \end{array} $
I.1.5 Development of Adsorption Technology I.1.5.1 Adsorption Technology I.1.5.2 Physical Adsorption I.1.5.3 Chemical Adsorption	27-28 28 28-29 29
 I.1.6 Description of LDH structure and its features I.1.6.1 Utilization of LDH based adsorbents in water remediation I.1.6.2 Overview of LDH synthesis I.1.6.3 Critical factors influencing dye adsorption by LDH based adsorbent I.1.6.4 Mechanism of sorption by LDH based adsorbents 	29-31 32 32-34 34-36 36-37

I.1.7 Review on LDH based adsorbents I.1.7.1 Pristine LDH in dye remediation I.1.7.2 Surfactants modified LDH for dye remediation I.1.7.3 Biomass ash/LDH composite	38 38 39-40 40-42
I.1.7.4 Magnetic LDH composite for dye removal	42-43
I.1.7.5 Polymer-based LDH composite	43-45
I.1.8 Aims and Objectives of the present study I.1.9 Summary I.2.References	48 49 50-55
	50-55
Chapter–II: ZrO ₂ /MgAl-LDH composites and evaluation of its isotherm, kinetics and thermodynamic properties in the adsorption of congo red dye	56-95
II.1 Introduction	57-59
II.2 Experimental	59
II.2.1 Materials and Methods II.2.1.1 Synthesis of the ZrO ₂ /MgAl-LDH composite	59 60
II.2.1.2 Characterization	60-61
II.2.1.3 Adsorption experiment	61-62
II.2.1.4 Desorption Studies:	62
II.2.1.5 Error Analysis	62-63
II.2.2 Adsorption Isotherm (Langmuir isotherm)	63-64
II.2.2.1 Freundlich Isotherm	64
II.2.2.2 Temkin Isotherm	64
II.2.2.3 Redlich-Peterson Isotherm II.2.2.4 Adsorption Kinetics	64-65 65-67
II.3 Results and Discussions	67
II.3.1 Characterization of ZrO ₂ /MgAl-LDH	67-73
II.3.1.1 Effect of adsorption parameters	74
II.3.1.2 Effect of pH	74-75
II.3.1.3 Effect of contact time	76
II.3.1.4 Effect of initial dye concentration	76
II.3.1.5 Effect of dosages	77
II.3.1.6 Effect of ionic strength and coexisting ions II.3.1.7 Effect of agitation speed	77 78
II.3.2 Isotherm Studies	79-81
II.3.3 Kinetics studies	81-84
II.3.4 Thermodynamic studies	85-88
II.3.5 Mechanism of Congo red adsorption on ZrO ₂ /MgAl-LDH	88
II.3.6 Reusability and Desorption studies	89-90
II.3.7 Comparison with reported adsorbents	91
II.4 Conclusion II.5 References	91-92 93-95
Chapter-III: Surfactants assisted synthesis of CuAl-sodium dodecyl sulfate layered double hydroxide and its adsorptive removal of methyl red dye from aqueous solution	96
III.1 Introduction	97-99

III.2 Experimental	99
III.2.1 Materials and Methods	99
III.2.2 Synthesis	99-100
III.2.3 Adsorption Experiment III.2.4 Characterization techniques	100 101
m.z.4 Characterization techniques	101
III.3. Results and Discussions	102
III.3.1 Characterization of adsorbents	102-108
III.3.2 Adsorption Isotherm	109
III.3.2.1 Langmuir Isotherm	109-110
III.3.2.2 Freundlich Isotherm	111
III.3.2.3 Temkin Isotherm	111-113
III.3.3 Adsorption Kinetics	113-116
III.3.3.1 Effect of temperature	116-118
III.3.3.2. Effect of initial dye concentration	118-119
III 3.3.3. Effect of Adsorbent dosages	119-120
III.3.3.4. Effect of contact time	121-122
III.3.3.5. Effect of solution pH	122-123
III. 3.3.6. Mechanism of adsorption	123
III.3.3.7. Reusability	124-125
III.4. Conclusion	125
III.5. References	126-127
Chapter-IV: Coconut husk ash fabricated CoAl-LDH composite for the enhanced sorption of malachite green dye: Isotherm, kinetics and thermodynamic studies	128
IV.1 Introduction	129-131
IV.2. Experimental	131
IV.2.1 Materials and Methods	131-132
IV.2.1.1 Synthesis of CHA/CoAl-LDH Composite	131 132
IV.2.1.2 Characterization	132-133
IV.2.2 Adsorption Experiment	133-134
IV.2.2.1 Adsorption Experiment IV.2.2.1 Adsorption Isotherm (Langmuir isotherm)	134-135
IV.2.2.1 Freudlich	131 135
IV.2.2.3 Temkin	135-136
IV.2.2.4 Adsorption Kinetics	136-137
IV.2.2.5 Elovich model	137
IV.2.2.6 Bangham model	137
IV.3. Results and Discussion	138
IV.3.1 Characterization of CHA and CHA/CoAl-LDH Composite	138-145
IV.3.2 Effect of adsorption parameters	146
IV.3.2.1 Effect of contact time	146
IV.3.2.2 Effect of Initial dye concentration	146-147
IV.3.2.3 Effect of adsorbent dosages	147
IV.3.3.4 Effect of pH	140 150
IV.3.3.5 Adsorption efficiency for various organic dyes	148-150

IV.4 Conclusion 164 IV.5 References 168 105-167 168 V.1 Introduction 169 V.2.1 Materials and Methods 169 V.2.2 Experimental section 169 V.2.2 Synthesis of the adsorbent CHA/NIAI-LDH 170 V.2.3 Adsorption Experiment 171 V.3.1 Characterization of the adsorbents 171 V.3.1 Characterization of the adsorbents 171 V.3.1.2 FU-R analysis 172 V.3.1.3 Effect of Temperature 178-172 V.3.2 Effect of Temperature 178-179 V.3.2 Effect of Contact Time 180-181 V.3.4 Effect of Contact Time 181-182 V.3.5 Effect of Contact Time 187 V.3.6 Adsorption Mechanism 187 V.5. References 188 V.4 Conclusion 191 V.1 Introduction 191-192 V.1.2 Adsorption Stotherm Analysis 192 V.1.2 Adsorption Stotherm Analysis 187 V.5. References 187 V.5. References 193 V1.1 Introduction 191-192 V1.2 Adsorption Experiment	IV.3.4 Effect of Temperature IV.3.5 Adsorption Isotherm IV.3.6 Kinetics studies IV.3.7 Adsorption Mechanism IV.3.8 Comparative analysis with other adsorbents IV.3.9 Reusability	150-154 154-157 157-160 161-162 162-163 163-164
V.1 Introduction 169 V.2. Experimental section 169 V.2.1 Materials and Methods 169 V.2.2 Synthesis of the adsorbent CHA/NiAI-LDH 170 V.2.3 Adsorption Experiment 170-171 V.3. Results and Discussion 171 V.3.1 Characterization of the adsorbents 171 V.3.1 Characterization of the adsorbents 171 V.3.1 Characterization of the adsorbents 171 V.3.1 Surface area, pore size, pore volume analysis 173-174 V.3.1.2 FFT-R nanalysis 172 V.3.1.3 Effect of Dosages 179-178-179 V.3.2 Effect of Contact Time 180-181 V.3.5 Effect of Contact Time 181-182 V.3.6 Effect of Contact Time 181-182 V.3.7 Kinetic data Analysis 184-186 V.3.8 Adsorption Isotherm Analysis 187 V.4 Conclusion 187 V.5 References 188-189 Chapter-VI: Synthesis of ternary CaNiAl-layered double hydroxide as a potential adsorbent and its effective removal of congo red and methyl orange dye from aqueous solution 190 V1.1 Introduction 191-192 V1.2 Adsorption Experiment 193-194 V1.3 Results and Discussion 193 V1.2.1 Preparation of adsorbents 193 V1.2.2 Adsorption Experiment 193-19	IV.4 Conclusion IV.5 References	
V.2 Experimental section169V.2.1 Materials and Methods169V.2.2 Synthesis of the adsorbent CHA/NiAI-LDH170V.2.3 Adsorption Experiment170V.3. Results and Discussion171V.3. Results and Discussion171V.3.1 Dowder X-ray Diffraction171-172V.3.1.2 FF-1R analysis172V.3.1.3 Surface area, pore size, pore volume analysis173-174V.3.1.4 FESEM-EDX Analysis175-177V.3.2 Effect of Temperature178-179V.3.2 Effect of Dosages179-180V.3.4 Effect of Dosages179-180V.3.4 Effect of Contact Time180-181V.3.5 Effect of Contact Time181-182V.3.6 Adsorption Isotherm Analysis182-184V.3.7 Kinetic data Analysis184-186V.3.8 Adsorption Mechanism187V.4 Conclusion187V.5 References188-189Chapter-VI: Synthesis of ternary CaNiAI-layered double hydroxide as a potential adsorbent and its effective removal of congo red and methyl orange dye from aqueous solutionV1.1 Introduction191-192V1.2 Materials and Method192V1.2.1 Preparation of adsorbents193V1.2.2 Adsorption Experiment193-194V1.3 Termogravimetric analysis196V1.3 Thermogravimetric analysis196V1.3 Thermogravimetric analysis196V1.3 Thermogravimetric analysis196V1.3 Thermogravimetric analysis196V1.3 Thermogravimetric analysis196V1.3 Thermogravimetric analysis197<	Chapter-V: Sorption studies of cationic dye methylene blue over CHA/NiAl-LDH adsorbent	168
V.2.1 Materials and Methods169V.2.2 Synthesis of the adsorbent CHA/NiAI-LDH170V.2.3 Adsorption Experiment170-171V.3. Results and Discussion171V.3.1 Characterization of the adsorbents171V.3.1.1 Powder X-ray Diffraction171V.3.1.2 FT-IR analysis172V.3.1.3 Surface area, pore size, pore volume analysis173-174V.3.1.4 FESEM-EDX Analysis175-177V.3.2 Effect of Temperature178-179V.3.3 Effect of Dosages179-180V.3.4 Effect of Otatal Dye Concentration180-181V.3.5 Effect of Contact Time181-182V.3.6 Adsorption Isotherm Analysis184-186V.3.7 Kinetic data Analysis184V.3.8 Adsorption Mechanism187V.4 Conclusion187V.5. References188Chapter-VI: Synthesis of ternary CaNIAI-layered double hydroxide as a potential adsorbent and its effective removal of congo red and methyl orange dye from aqueous solution190VI.2 Materials and Method192VI.2 Adsorption Experiment193VI.2 Adsorption Experiment193VI.2 Adsorption Experiment194VI. 3.8 Effect area analysis195VI. 3.4 Thermogravimetric analysis195VI. 3.4 Thermogravimetric analysis195VI. 4.1 Adsorption Isotherm199-201VI.4.1 Adsorption Isotherm199-201VI.4.2 Adsorption Isotherm199-201VI.4.2 Adsorption Isotherm199-201VI.4.2 Adsorption Isotherm199-201VI.4.1 Adsorp	V.1 Introduction	169
V.2.2 Synthesis of the adsorbent CHA/NiAl-LDH170V.2.3 Adsorption Experiment170-171V.3. Results and Discussion171V.3.1 Characterization of the adsorbents171V.3.1.1 Powder X-ray Diffraction172-172V.3.1.2 FT-R analysis172V.3.1.3 Surface area, pore size, pore volume analysis173-174V.3.1.4 FT-R malysis175-177V.3.1.5 Effect of Temperature178-179V.3.3 Effect of Dosages179-180V.3.4 Effect of Initial Dye Concentration180-181V.3.5 Effect of Contact Time181-182V.3.6 Adsorption Isotherm Analysis182-184V.3.7 Kinetic data Analysis187V.5. References187V.5. References187V.1.1 Introduction191-192V1.2 Materials and Method192V1.2 Adsorption Experiment193-194V1.3 Results and Discussion194V1.3 Results and Discussion195V1.3 Set field Emission Scanning Emission microscopy198V1.4.1 Adsorption Isotherm199-201V1.4.2 Adsorption Isotherm199-201		169
V.2.3 Adsorption Experiment 170-171 V.3. Results and Discussion 171 V.3.1 Characterization of the adsorbents 171 V.3.1.1 Powder X-ray Diffraction 171-172 V.3.1.2 FT-IR analysis 172 V.3.1.3 Surface area, pore size, pore volume analysis 173-174 V.3.1.4 FESEM-EDX Analysis 175-177 V.3.2 Effect of Temperature 178-179 V.3.3 Effect of Dosages 179-180 V.3.4 Effect of Initial Dye Concentration 180-181 V.3.5 Effect of Contact Time 181-182 V.3.6 Adsorption Isotherm Analysis 182-184 V.3.7 Kinetic data Analysis 187 V.4 Conclusion 187 V.5. References 188 Chapter-VI: Synthesis of ternary CaNiAl-layered double hydroxide as a potential adsorbent and its effective removal of congo red and methyl orange dye from aqueous solution 190 VI.1 Introduction 191-192 VI.2 Adsorption Experiment 193 VI.2 Adsorption Experiment 193 VI.2. Adsorption Experiment 194 VI.3. Prowder X-ray Diffraction study 194 VI.3. Thermogravimetric analysis 195 VI.3.3 Eff sur		
V.3. Results and Discussion171V.3.1 Characterization of the adsorbents171V.3.1.1 Powder X-ray Diffraction171-172V.3.1.2 FF1-R analysis172V.3.1.3 Surface area, pore size, pore volume analysis173-174V.3.1.4 FESEM-EDX Analysis175-177V.3.2 Effect of Temperature178-179V.3.3 Effect of Dosages179-180V.3.4 Effect of Initial Dye Concentration180-181V.3.5 Effect of Contact Time181-182V.3.6 Adsorption Isotherm Analysis182-184V.3.7 Kinetic data Analysis184-186V.3.8 Adsorption Mechanism187V.4 Conclusion187V.5. References188Chapter-VI: Synthesis of ternary CaNiAI-layered double hydroxide as a potential adsorbent and its effective removal of congo red and methyl orange dye from aqueous solution190VI.1 Introduction191-192VI.2 Materials and Method192VI.2.1 Preparation of adsorbents193VI.2.2 Adsorption Experiment194VI.3.3 BET surface area analysis195VI.3.4 Thermogravimetric analysis196VI.3.5 Field Emission Scanning Emission microscopy198VI.4.1 Adsorption Isotherm199-201VI.4.2 Adsorption Isotherm199-201VI.4.2 Adsorption Isotherm199-201		
V.3.1 Characterization of the adsorbents171V.3.1.1 Powder X-ray Diffraction171-172V.3.1.2 FT-IR analysis172V.3.1.3 Surface area, pore size, pore volume analysis173-174V.3.1.4 FT2SEM-EDX Analysis175-177V.3.2 Effect of Temperature178-179V.3.3 Effect of Dosages179-180V.3.4 Effect of Initial Dye Concentration180-181V.3.5 Effect of Contact Time181-182V.3.6 Adsorption Isotherm Analysis182-184V.3.7 Kinetic data Analysis184-186V.3.8 Adsorption Mechanism187V.5. References188Chapter-VI: Synthesis of ternary CaNiAI-layered double hydroxide as a potential adsorbent and its effective removal of congo red and methyl orange dye from aqueous solution190VI.1 Introduction191-192VI.2 Adsorption Experiment193VI.2.2 Adsorption Experiment193VI.3.3 BHET surface area analysis194VI.3.4 Filter strate area analysis195VI.3.5 Field Emission Scanning Emission microscopy198VI.4.1 Adsorption Isotherm192-201VI.4.2 Adsorption Isotherm193	V.2.3 Adsorption Experiment	170-171
V.3.1.1 Powder X-ray Diffraction171-172V.3.1.2 FT-IR analysis172V.3.1.3 Surface area, pore size, pore volume analysis173-174V.3.1.4 FESEM-EDX Analysis175-177V.3.2 Effect of Temperature178-179V.3.3 Effect of Dosages179-180V.3.4 Effect of Initial Dye Concentration180-181V.3.5 Effect of Contact Time181-182V.3.6 Effect of Contact Time181-182V.3.7 Kinetic data Analysis184-186V.3.7 Kinetic data Analysis184V.3.8 Adsorption Mechanism187V.4 Conclusion187V.5. References188-189Chapter-VI: Synthesis of ternary CaNiAl-layered double hydroxide as a potential adsorbent and its effective removal of congo red and methyl orange dye from aqueous solution190VI.1 Introduction191-192VI.2 Materials and Method192VI.2.1 Preparation of adsorbents193VI.2.2 Adsorption Experiment193-194VI. 3.1 Powder X-ray Diffraction study194VI. 3.2 Eff-IR analysis195VI. 3.3 Effer surface area analysis196VI. 3.4 Thermogravimetric analysis197VI. 3.5 Field Emission Scanning Emission microscopy198VI.4.1 Adsorption Isotherm199-201VI.4.2 Adsorption Isotherm199-201	V.3. Results and Discussion	171
V.3.1.2 FT-IR analysis172V.3.1.3 Surface area, pore size, pore volume analysis173-174V.3.1.4. FESEM-EDX Analysis175-177V.3.2 Effect of Temperature178-179V.3.3 Effect of Dosages179-180V.3.4 Effect of Dosages180-181V.3.5 Effect of Contact Time181-182V.3.6 Adsorption Isotherm Analysis182-184V.3.7 Kinetic data Analysis184-186V.3.8 Adsorption Mechanism187V.4 Conclusion187V.5. References188Chapter-VI: Synthesis of ternary CaNiAl-layered double hydroxide as a potential adsorbent and its effective removal of congo red and methyl orange dye from aqueous solution190VI.1 Introduction191-192VI.2 Materials and Method192VI.2.1 Preparation of adsorbents193VI.2.2 Adsorption Experiment194VI. 3.1 Powder X-ray Diffraction study194VI. 3.2 FT-IR analysis195VI. 3.4 Thermogravimetric analysis197VI. 3.5 Field Emission Scanning Emission microscopy198VI.4.1 Adsorption Isotherm199-201VI.4.2 Adsorption Isotherm199-201	V.3.1 Characterization of the adsorbents	171
V.3.1.3 Surface area, pore size, pore volume analysis173-174V.3.1.4. FESEM-EDX Analysis175-177V.3.2 Effect of Temperature178-179V.3.3 Effect of Dosages179-180V.3.4 Effect of Loitial Dye Concentration180-181V.3.5 Effect of Contact Time181-182V.3.6 Adsorption Isotherm Analysis182-184V.3.7 Kinetic data Analysis184-186V.3.8 Adsorption Mechanism187V.4 Conclusion187V.5 References188-189Chapter-VI: Synthesis of ternary CaNiAl-layered double hydroxide as a potential adsorbent and its effective removal of congo red and methyl orange dye from aqueous solution190VI.1 Introduction191-192VI.2 Materials and Method192VI.2.2 Adsorption Experiment193VI.3.1 Powder X-ray Diffraction study194VI. 3.1 Powder X-ray Diffraction study194VI. 3.5 Field Emission Scanning Emission microscopy198VI.4.1 Adsorption Isotherm199-201VI.4.2 Adsorption Kinetics202-206	V.3.1.1 Powder X-ray Diffraction	171-172
V.3.1.4. FESEM-EDX Analysis175-177V.3.2 Effect of Temperature178-179V.3.3 Effect of Dosages179-180V.3.4 Effect of Initial Dye Concentration180-181V.3.5 Effect of Contact Time181-182V.3.6 Adsorption Isotherm Analysis182-184V.3.7 Kinetic data Analysis184-186V.3.8 Adsorption Mechanism187V.4 Conclusion187V.5. References188-189Chapter-VI: Synthesis of ternary CaNiAl-layered double hydroxide as a potential adsorbent and its effective removal of congo red and methyl orange dye from aqueous solution190VI.1 Introduction191-192VI.2 Materials and Method192VI.2.2 Adsorption Experiment193VI.3.3 Periment193VI.3.4 Preparation of adsorbents194VI.3.3 BET surface area analysis195VI.3.4 Thermogravimetric analysis196VI.3.5 Field Emission Scanning Emission microscopy198VI.4.2 Adsorption Isotherm199-201VI.4.2 Adsorption Isotherm199-201	V.3.1.2 FT-IR analysis	172
V.3.2 Effect of Temperature178-179V.3.3 Effect of Dosages179-180V.3.4 Effect of Initial Dye Concentration180-181V.3.5 Effect of Contact Time181-182V.3.6 Adsorption Isotherm Analysis182-184V.3.7 Kinetic data Analysis184-186V.3.8 Adsorption Mechanism187V.4 ConclusionV.4 Conclusion187V.5. References188-189Chapter-VI: Synthesis of ternary CaNiAl-layered double hydroxide as a potential adsorbent and its effective removal of congo red and methyl orange dye from aqueous solutionVI.1 Introduction191-192VI.2 Materials and Method192VI.2.1 Preparation of adsorbents193VI.2.2 Adsorption Experiment194VI. 3.1 Powder X-ray Diffraction study194VI. 3.3 BET surface area analysis195VI. 3.3 BET surface area analysis196VI. 3.4 Thermogravimetric analysis197VI. 3.5 Field Emission Scanning Emission microscopy198VI.4.1 Adsorption Isotherm199-201VI.4.2 Adsorption Kinetics202-206	V.3.1.3 Surface area, pore size, pore volume analysis	173-174
V.3.3 Effect of Dosages179-180V.3.4 Effect of Initial Dye Concentration180-181V.3.5 Effect of Contact Time181-182V.3.6 Adsorption Isotherm182-184V.3.7 Kinetic data Analysis182-184V.3.7 Kinetic data Analysis184-186V.3.8 Adsorption Mechanism187V.4 Conclusion187V.5. References188-189Chapter-VI: Synthesis of ternary CaNiAl-layered double hydroxide as a potential adsorbent and its effective removal of congo red and methyl orange dye from aqueous solution190VI.1 Introduction191-192VI. 2 Materials and Method192 VI.2.1 Preparation of adsorbents193 VI.2.2 Adsorption ExperimentVI. 3. Results and Discussion194 VI. 3.1 Powder X-ray Diffraction study194 VI. 3.3 BET surface area analysis195 VI. 3.4 Thermogravimetric analysis195 VI. 3.5 Field Emission Scanning Emission microscopy198 VI.4.2 Adsorption Kinetics202-206	•	175-177
V.3.4 Effect of Initial Dye Concentration180-181V.3.5 Effect of Contact Time181-182V.3.6 Adsorption Isotherm Analysis182-184V.3.7 Kinetic data Analysis184-186V.3.8 Adsorption Mechanism187V.4 Conclusion187V.5. References188-189Chapter-VI: Synthesis of ternary CaNiAl-layered double hydroxide as a potential adsorbent and its effective removal of congo red and methyl orange dye from aqueous solution190VI.1 Introduction191-192VI. 2 Materials and Method192VI.2.1 Preparation of adsorbents193VI.2.2 Adsorption Experiment193-194VI. 3.1 Powder X-ray Diffraction study194VI. 3.3 BET surface area analysis195VI. 3.4 Thermogravimetric analysis197VI. 3.5 Field Emission Scanning Emission microscopy198VI.4.2 Adsorption Kinetics202-206		
V.3.5 Effect of Contact Time181-182V.3.6 Adsorption Isotherm Analysis182-184V.3.7 Kinetic data Analysis184-186V.3.8 Adsorption Mechanism187V.4 Conclusion187V.5. References188Chapter-VI: Synthesis of ternary CaNiAl-layered double hydroxide as a potential adsorbent and its190effective removal of congo red and methyl orange dye from aqueous solution191-192VI.1 Introduction191-192VI.2 Materials and Method192VI.2.1 Preparation of adsorbents193VI.2.2 Adsorption Experiment193-194VI. 3.1 Powder X-ray Diffraction study194VI. 3.2 FT-IR analysis195VI. 3.3 BET surface area analysis196VI. 3.4 Thermogravimetric analysis197VI. 3.5 Field Emission Scanning Emission microscopy198VI.4.1 Adsorption Isotherm199-201VI.4.2 Adsorption Kinetics202-206		
V.3.6 Adsorption Isotherm Analysis182-184V.3.7 Kinetic data Analysis184-186V.3.8 Adsorption Mechanism187V.4 Conclusion187V.5. References188Chapter-VI: Synthesis of ternary CaNiAI-layered double hydroxide as a potential adsorbent and its190effective removal of congo red and methyl orange dye from aqueous solution191-192VI.1 Introduction191-192VI.2 Materials and Method192VI.2.1 Preparation of adsorbents193VI.2.2 Adsorption Experiment193-194VI. 3.1 Powder X-ray Diffraction study194VI. 3.2 FT-IR analysis195VI. 3.3 BET surface area analysis196VI. 3.4 Thermogravimetric analysis197VI. 3.5 Field Emission Scanning Emission microscopy198VI.4.1 Adsorption Isotherm199-201VI.4.2 Adsorption Kinetics202-206		
V.3.7 Kinetic data Analysis184-186V.3.8 Adsorption Mechanism187V.4 Conclusion187V.5. References188Chapter-VI: Synthesis of ternary CaNiAl-layered double hydroxide as a potential adsorbent and its effective removal of congo red and methyl orange dye from aqueous solution190VI.1 Introduction191-192VI. 2 Materials and Method192VI.2.1 Preparation of adsorbents193VI.2.2 Adsorption Experiment193-194VI. 3.1 Powder X-ray Diffraction study194VI. 3.2 FT-IR analysis195VI. 3.4 Thermogravimetric analysis197VI. 3.5 Field Emission Scanning Emission microscopy198VI.4.1 Adsorption Isotherm199-201VI.4.2 Adsorption Kinetics202-206		
V.3.8 Adsorption Mechanism187V.4 Conclusion187V.5. References188Chapter-VI: Synthesis of ternary CaNiAl-layered double hydroxide as a potential adsorbent and its effective removal of congo red and methyl orange dye from aqueous solution190VI.1 Introduction191-192VI.2 Materials and Method192VI.2.1 Preparation of adsorbents193VI.2.2 Adsorption Experiment193VI.3 Results and Discussion194VI.3.1 Powder X-ray Diffraction study194VI.3.2 FT-IR analysis195VI.3.3 BET surface area analysis196VI.3.4 Thermogravimetric analysis197VI. 3.5 Field Emission Scanning Emission microscopy198VI.4.1 Adsorption Isotherm199-201VI.4.2 Adsorption Kinetics202-206		
V.4 Conclusion187V.5. References188Chapter-VI: Synthesis of ternary CaNiAl-layered double hydroxide as a potential adsorbent and its effective removal of congo red and methyl orange dye from aqueous solution190VI.1 Introduction191-192VI.2 Materials and Method192VI.2.1 Preparation of adsorbents193VI.2.2 Adsorption Experiment193-194VI. 3 Results and Discussion194VI. 3.1 Powder X-ray Diffraction study194VI. 3.2 FT-IR analysis195VI. 3.3 BET surface area analysis196VI. 3.4 Thermogravimetric analysis197VI. 3.5 Field Emission Scanning Emission microscopy198VI.4.1 Adsorption Isotherm199-201VI.4.2 Adsorption Kinetics202-206		
V.5. References188-189Chapter-VI: Synthesis of ternary CaNiAl-layered double hydroxide as a potential adsorbent and its effective removal of congo red and methyl orange dye from aqueous solution190VI.1 Introduction191-192VI.2 Materials and Method192 VI.2.1 Preparation of adsorbents193 193 VI.2.2 Adsorption ExperimentVI.3 Results and Discussion194 VI. 3.1 Powder X-ray Diffraction study194 194 VI. 3.2 FT-IR analysis195 195 VI. 3.3 BET surface area analysis196 197 VI. 3.5 Field Emission Scanning Emission microscopy198 197 192-201 202-206	V.3.8 Adsorption Mechanism	187
effective removal of congo red and methyl orange dye from aqueous solutionVI.1 Introduction191-192VI. 2 Materials and Method192VI.2.1 Preparation of adsorbents193VI.2.2 Adsorption Experiment193-194VI. 3 Results and Discussion194VI. 3.1 Powder X-ray Diffraction study194VI. 3.2 FT-IR analysis195VI. 3.3 BET surface area analysis196VI. 3.4 Thermogravimetric analysis197VI. 3.5 Field Emission Scanning Emission microscopy198VI.4.1 Adsorption Isotherm199-201VI.4.2 Adsorption Kinetics202-206		
VI. 2 Materials and Method192VI.2.1 Preparation of adsorbents193VI.2.2 Adsorption Experiment193-194VI. 3 Results and Discussion194VI. 3.1 Powder X-ray Diffraction study194VI. 3.2 FT-IR analysis195VI. 3.3 BET surface area analysis196VI. 3.4 Thermogravimetric analysis197VI. 3.5 Field Emission Scanning Emission microscopy198VI.4.1 Adsorption Isotherm199-201VI.4.2 Adsorption Kinetics202-206		190
VI.2.1 Preparation of adsorbents193VI.2.2 Adsorption Experiment193-194VI. 3 Results and Discussion194VI. 3.1 Powder X-ray Diffraction study194VI. 3.2 FT-IR analysis195VI. 3.3 BET surface area analysis196VI. 3.4 Thermogravimetric analysis197VI. 3.5 Field Emission Scanning Emission microscopy198VI.4.1 Adsorption Isotherm199-201VI.4.2 Adsorption Kinetics202-206	VI.1 Introduction	191-192
VI.2.1 Preparation of adsorbents193VI.2.2 Adsorption Experiment193-194VI. 3 Results and Discussion194VI. 3.1 Powder X-ray Diffraction study194VI. 3.2 FT-IR analysis195VI. 3.3 BET surface area analysis196VI. 3.4 Thermogravimetric analysis197VI. 3.5 Field Emission Scanning Emission microscopy198VI.4.1 Adsorption Isotherm199-201VI.4.2 Adsorption Kinetics202-206	VI. 2 Materials and Method	192
VI.2.2 Adsorption Experiment193-194VI. 3.3 Results and Discussion194VI. 3.1 Powder X-ray Diffraction study194VI. 3.2 FT-IR analysis195VI. 3.2 FT-IR analysis195VI. 3.3 BET surface area analysis196VI. 3.4 Thermogravimetric analysis197VI. 3.5 Field Emission Scanning Emission microscopy198VI.4.1 Adsorption Isotherm199-201VI.4.2 Adsorption Kinetics202-206		
VI. 3.1 Powder X-ray Diffraction study194VI. 3.2 FT-IR analysis195VI. 3.3 BET surface area analysis196VI. 3.4 Thermogravimetric analysis197VI. 3.5 Field Emission Scanning Emission microscopy198VI.4.1 Adsorption Isotherm199-201VI.4.2 Adsorption Kinetics202-206	-	
VI. 3.1 Powder X-ray Diffraction study194VI. 3.2 FT-IR analysis195VI. 3.3 BET surface area analysis196VI. 3.4 Thermogravimetric analysis197VI. 3.5 Field Emission Scanning Emission microscopy198VI.4.1 Adsorption Isotherm199-201VI.4.2 Adsorption Kinetics202-206	VI 2 Decults and Discussion	104
VI. 3.2 FT-IR analysis195VI. 3.3 BET surface area analysis196VI. 3.4 Thermogravimetric analysis197VI. 3.5 Field Emission Scanning Emission microscopy198VI.4.1 Adsorption Isotherm199-201VI.4.2 Adsorption Kinetics202-206		
VI. 3.3 BET surface area analysis196VI. 3.4 Thermogravimetric analysis197VI. 3.5 Field Emission Scanning Emission microscopy198VI.4.1 Adsorption Isotherm199-201VI.4.2 Adsorption Kinetics202-206		
VI. 3.4 Thermogravimetric analysis197VI. 3.5 Field Emission Scanning Emission microscopy198VI.4.1 Adsorption Isotherm199-201VI.4.2 Adsorption Kinetics202-206		
VI.4.1 Adsorption Isotherm199-201VI.4.2 Adsorption Kinetics202-206		
VI.4.1 Adsorption Isotherm199-201VI.4.2 Adsorption Kinetics202-206	VI 3.5 Field Emission Scanning Emission microscopy	198
VI.4.2 Adsorption Kinetics 202-206		

VI.4.4 Effect of Adsorbent dosages	207
VI.4.5 Effect of pH	207-208
VI.4.6 Thermodynamic Studies	208-210
VI.4.7 Comparison with reported adsorbents	210
VI.4.8 Reusability	211
VI.5 Conclusion	212
VI.6 References	213-214
Chapter-VII: General Conclusion	215
VII.1 Future scope	220
List of publications/seminars	221

List of Tables

Table	Caption	Page
I.1 I.2 I.3 II.1	Summary of industrial application and toxic effects of organic dyes. Discharge limits based on environmental protection rules 1986. Summary of LDH based adsorbents reported in decontamination of organic dyes. The characteristics cell parameters of ZrO ₂ /MgAl-LDH before and after the adsorption of CR dye.	16 18 46-47 68
II.2	Adsorption isotherm parameters for adsorption of CR dye on to ZrO ₂ /MgAl-LDH obtained from the non-linear fitting of Langmuir, Freundlich, Temkin and Redlich-Peterson model.	80
II.3	Parameters of pseudo-first-order, pseudo-second-order and intraparticle diffusion model for the adsorptive removal of CR by ZrO ₂ /MgAl-LDH.	83
II.4 II.5	Thermodynamic parameters for the CR uptake on to ZrO ₂ /MgAl-LDH. The comparison of optimum experimental conditions for the removal of CR dye by several reported adsorbents.	87 91
III.1	Atomic percentage of the constituent elements present in the proposed adsorbent determined by EDX analysis.	108
III.2 III.3 III.4	Isotherm parameters for adsorption of methyl red onto CuAl-LDH and CuAl/SDS-LDH. Comparison of various adsorbents used for removal of methyl red dye. Parameters of three kinetic model for adsorption of 50mg/L of methyl red by CuAl-LDH	112 113 115
III.5	and CuAl/SDS-LDH. Thermodynamic parameters for adsorption of methyl red on CuAl-LDH and CuAl/SDS- LDH.	117
IV.1 IV.2	The elemental composition of the proposed adsorbents CHA and CHA/CoAl-LDH. Thermodynamic parameters for the adsorption of MG dye on to CHA and CHA/CoAl- LDH composite.	141 153
IV.3	Langmuir, Freundlich and Temkin isotherm parameters for the adsorption of MG dye on to CHA and CHA/CoAl-LDH composite.	156
IV.4	Parameters of pseudo-first-order, pseudo-second-order and intraparticle diffusion and Elovich model for the adsorptive removal of MG dye by CHA and CHA/CoAl-LDH adsorbent.	159
IV.5	Comparison of the optimum experimental condition for the adsorption of MG dye by previously reported adsorbents.	163
V.1	Thermodynamic parameters for adsorption of methylene blue on CHA and CHA/NiAl-LDH.	178
V.2 V.3 VI.1	Adsorption Isotherm parameters for methylene blue adsorption. Adsorption kinetics parameters for methylene blue adsorption. Adsorption isotherm parameters determined by Langmuir, Freundlich and Temkin models.	183 185 201
VI.2 VI.3 VII.1 VII.2	Kinetic parameters for the adsorption of CR dye on to CaNiAl-LDH. Calculated thermodynamic parameters for the CaNiAl-LDH-CR system. The elemental composition of all synthesized adsorbents. The isotherm, kinetics, thermodynamics, adsorption mechanism and synthetic method of all the studied adsorbate-adsorbent system are listed.	203 210 218 219

List of Figures

Figure	Caption	Page
I.1	Chemical structure of various chromophoric groups.	7
I.2	Classification of dyes.	7
I.3	Various dye remediation techniques.	19
I.4	Mechanism of photocatalytic degradation of dye.	23
I.5	The basic structure of layered double hydroxide (LDH) and its application.	31
II.1	XRD pattern of ZrO ₂ /MgAl-LDH and CR adsorbed ZrO ₂ / MgAl-LDH-CR.	68
II.2	FT-IR spectra (a) ZrO ₂ /MgAl-LDH (b) Congo red (c) ZrO ₂ /MgAl-LDH-CR.	69
II.3	 (a) N₂ adsorption-desorption isotherm and pore sized distribution of ZrO₂/MgAl-LDH (b) Thermogravimetric analysis of ZrO₂/MgAl-LDH. 	70
II.4	FE-SEM micrograph (A-D) of ZrO ₂ /MgAl-LDH at different resolution (200 nm, 1 μ m an 2 μ m).	71
II.5	EDX spectra of ZrO ₂ /MgAl-LDH composite.	72
II.6	HRTEM images (A-E) and SAED pattern (F) of ZrO ₂ /MgAl-LDH composite.	72
II.7	XPS spectra of ZrO ₂ /MgAl-LDH (a- wide scan, b- C1s, c- O1s, d- Mg2s, e- Al 2p, f- Zr3d).	73
II.8	Effect of various parameters for adsorption of CR dye over ZrO ₂ /MgAl-LDH (a) pH	74
	$(C_0=50 \text{ mg/L}, \text{ adsorbent dosages}=0.02 \text{g}, \text{ time}=90 \text{ min}, \text{ volume}=20 \text{ mL}).$ (b) Contact time ($C_0=30, 60, 90 \text{ mg/L}, \text{ adsorbent dosages}=0.02 \text{g}, \text{ time}=90 \text{ min}, \text{ volume}=40 \text{ mL})$ (c)	
	Initial dye concentration ($C_0=30-150$ mg/L, adsorbent dosages=0.02g, time=240min, volume=20mL, temperature= 303-333K) (d) Adsorbent dosages ($C_0=50$ mg/L, time=240min, volume=20mL).	
ΠO		75
II.9	Determination of the point of zero charge (PZC) value of ZrO ₂ /MgAl-LDH from pH initial vs pH final plot.	75
II.10	 (a) Effect of ionic strength (C₀= 50 mg/L, adsorbent dosages= 0.02 g, time=120 min, volume=20 mL) (b) Influence of coexisting ions (C₀=50 mg/L, adsorbent dosages=0.02 g, time=120 min, volume=20 mL). 	78
II.11	Effect of agitation speed on the adsorption of CR dye ($C_0=40 \text{ mg/L}$, dosages=0.015 g, contact time= 1 hour).	79
II.12	Non-Linear fitting of various adsorption isotherm model (a) Langmuir (b) Freundlich (c) Temkin (d) Redlich-Peterson for adsorption of CR over ZrO ₂ /MgAl-LDH.	81
II.13	(a) R_L vs C_0 plot at 303K (b) Pseudo-first-order kinetics plot (c) Pseudo-second-order kinetics plot (d) Intraparticle diffusion plot.	82
II.14	(a) Boyd kinetic plot and (b) Bangham kinetic plot.	84
II.15	Vant-Hoff plot for the adsorption behavior of the CR by the adsorbent $ZrO_2/MgAl-LDH$ (C ₀ =30,120 mg/L, temperature=303 K, 313 K, 333 K, adsorbent dosages=0.02 g	85
	volume=20 mL, contact time=240 min).	
II.16	Modified Arrhenius plot for the adsorption behavior of the CR by the adsorbent	87
	$ZrO_2/MgAl-LDH$. (C ₀ =30,120 mg/L, temperature=303 K, 313 K, 333 K, adsorbent dosages=0.02 g, volume=20 mL, contact time=240 min).	
II.17	Schematic representation of the plausible adsorption mechanism in CR adsorption on to ZrO ₂ /MgAl-LDH.	89

II.18	(a) Reusability studies for the adsorption of CR dye by $ZrO_2/MgAl-LDH$ (C ₀ =50	90
	mg/L, adsorbent dosages= 0.02 g, quantity= 20 mL, contact time= 6hours). (b)	
TTT 1	Desorption percentage of CR dye from ZrO ₂ /MgAl-LDH at different eluents.	102
III.1	XRD patterns of pristine CuAl-LDH and surfactants modified CuAl/SDS-LDH.	103
III.2	FTIR spectrum before and after adsorption of methyl red dye (a) CuAl-LDH (b) CuAl-	104
	LDH-methyl red (c) CuAl/SDS-LDH (d) CuAl/SDS-LDH-methyl red.	
III.3	N_2 adsorption-desorption isotherm and pore size distribution of (a) CuAl-LDH and (b)	105
	CuAl/SDS-LDH.	
III.4	TGA curves of (a) CuAl-LDH and (b) CuAl/SDS-LDH.	106
III.5	FE-SEM images of CuAl-LDH (A, B) and CuAl/SDS-LDH (C, D).	107
III.6	(A) EDX spectra of CuAl-LDH. (B) EDX spectra of CuAl/SDS-LDH.	108
III.7	Non-linear plot of adsorption isotherm by using Langmuir, Freundlich and Temkin	110
	model for adsorption of methyl red dye on CuAl-LDH (a,c) and CuAl/SDS-LDH	
	(b,d).	
III.8	Plot of R_L vs C_0 for adsorption of methyl red dye over two adsorbents (a) CuAl-LDH	111
111.0	and (b) CuAl/SDS-LDH.	111
		110
III.9	(a) Pseudo-first-order kinetic plot for adsorption of methyl red on CuAl-LDH and	116
	CuAl/SDS-LDH. (b) Pseudo-second-order kinetic plot (c) Intraparticle diffusion	
	kinetics plot.	
III.10	Vant-Hoff plot for the adsorption behavior of the methyl red by the adsorbents (a)	117
	CuAl-LDH (b) CuAl/SDS-LDH. (Initial dye concentration=90 mg/L, dosages=22 mg,	
	volume=20 mL, contact time=1 hour)	
III.11	Effect of initial dye concentration on adsorption efficiency of methyl red over (a)	119
	CuAl-LDH and (b) CuAl/SDS-LDH. (adsorbent dosages=22 mg, volume=20 mL,	
	contact time=6 hours)	
III.12	Influence of adsorbent dosages on the removal efficiency of methyl red dye by CuAl-	120
	LDH (a) and CuAl/SDS-LDH (b). (Initial dye concentration=95 mg/L, pH= neutral,	
	contact time=1 hr, volume=20 mL)	
III.13	Effect of contact time on the adsorption capacities of CuAl-LDH and CuAl/SDS-LDH.	122
	(Initial dye concentration=60 mg/L, pH=neutral, adsorbent dosages=44 mg,	
	volume=50 mL)	
III.14	Effect of solution pH on the adsorption efficiency of methyl red dye by two	123
	adsorbents. (Initial concentration=95 mg/L, volume=20 mL, contact time=2hour,	
	catalyst dosages=22 mg)	
III.15	Reusability studies for the removal efficiency of methyl red dye over two adsorbents	125
111.10	(Initial dye concentration=60 mg/L, adsorbent dosages=22 mg, pH=neutral, contact	123
	time=12 hours).	
IV.1		138
1.1.1	XRD pattern of CoAl-LDH, coconut husk ash (CHA) and CHA/CoAl-LDH composite.	158
IV.2	FT-IR spectra (a) CHA (b) CHA-MG (c) CHA/CoAl-LDH (d) CHA/CoAl-LDH-MG.	139
IV.2 IV.3	FE-SEM images of coconut husk ash CHA (A-C) and CHA/CoAl-LDH (D-F).	140
IV.4	EDX spectra of (a) CHA/CoAl-LDH composite and (b) CHA.	142
IV.5	TEM images of coconut husk ash (CHA) at different magnifications (A-E) and	143
	SAED pattern (F).	
IV.6	HRTEM images of CHA/CoAl-LDH at different magnification (A-E) and SAED	143
	pattern (F).	

IV.7	N_2 adsorption-desorption isotherm and pore sized distribution of (a) CHA and (b) CHA/CoAl-LDH composite.	144
IV.8	Effect of various parameters for adsorption of MG dye over CHA and CHA/CoAl- LDH composite (a) Contact time ($C_0 = 50$, 100 mg/L, adsorbent dosages = 0.015 g, time = 180 min, volume = 40 mL) (b) Initial dye concentration ($C_0 = 25-150$ mg/L, adsorbent dosages = 0.015 g, time = 120 min, volume = 40 mL) (c) and (d) Adsorbent dosages ($C_0 = 70$ mg/L, time = 180 min, volume=20 mL).	145
IV.9	Determination of the point of zero charge (PZC) value of CHA/CoAl-LDH composite (a) and CHA (b) from pH initial vs pH final plot. UV-Visible Spectra for the adsorption of MG dye on to CHA/CoAl-LDH composite (c) and CHA (d) adsorbents at different solution pH.	148
IV.10	(a) Effect of pH on the removal percentage of MG dye (C_0 = 100 mg/L, contact time = 120 min, dosages= 0.015 g). (b) Adsorption efficiency over various organic dyes (C_0 = 20 mg/L, dosages= 0.02 g, contant time = 24 hrs). (c) Vant-Hoff plot and (d) Modified Arrhenius plot for the adsorption of MG dye on to CHA and CHA/CoAl-LDH.	149
IV.11	Effect of temperature on the removal percentage of MG dye on to CHA and CHA/CoAl-LDH. (C_0 = 150 mg/L, contact time = 90 min, dosages = 0.015 g, volume = 40 mL)	154
IV.12	Linear plot of different isotherm models viz; Langmuir (a) Freundlich (b) Temkin (c) for the adsorption of MG dyes on to CHA and CHA/CoAl-LDH composite.	155
IV.13	R_L vs C_0 plot of (a) CHA and (b) CHA/CoAl-LDH composite.	157
IV.14	Linear plot of different kinetic models (a) Pseudo-first-order (b) Pseudo-second-order (c) Intraparticle diffusion (d) Elovich model.	158
IV.15	Graph illustrating (a) Bangham kinetic plot and (b) Reusability studies.	160
IV.16	Plausible adsorption mechanism for adsorption of MG dye on to CHA/CoAl-LDH composite.	162
V.1	PXRD pattern of CHA, NiAl-LDH and CHA/NiAl-LDH.	172
V.2	FT-IR spectra of CHA and CHA/NiAl-LDH.	173
V.3	N_2 adsorption-desorption isotherm of adsorbent (a) CHA and (c) CHA/NiAl-LDH. Pore size distribution of adsorbent (b) CHA and (d) CHA/NiAl-LDH.	174
V.4	FESEM images of CHA/NiAl-LDH composite.	175
V.5	EDS image of CHA/NiAl-LDH adsorbent.	176
V.6	Elemental mapping of few elements detected on CHA/NiAl-LDH.	177
V.7	Vant-Hoff plot for adsorption of methylene blue dye on to CHA and CHA/NiAl-LDH.	179
V.8	Effect of adsorbent dosages on dye removal %.	180
V.9	Effect of initial concentration on the equilibrium adsorption capacity of (a) CHA (b) CHA/NiAl-LDH.	181
V.10	Variation of q_t values with contact time.	182
V.11	Non-linear isotherm plot based on Langmuir, Frendhlich and Temkin model for the adsorption of methylene blue over (a) CHA and (b) CHA/NiAl-LDH adsorbent.	183
V.12	Plot of R_L vs C_0 for adsorbent (a) CHA and (b) CHA/NiAl-LDH.	184
V.13	Linear adsorption kinetics plot (a) Pseudo-first-order (b) Pseudo-second- order and (c) Intraparticle diffusion.	186
VI.1	PXRD pattern of CaNiAl-LDH before and after adsorption of CR and MO dye.	195
VI.2	FT-IR spectra of CaNiAl-LDH before and after adsorption of CR and MO dye.	196
VI.3	N ₂ adsorption-desorption isotherm curve of CaNiAl-LDH.	197
VI.4	TGA profile of the adsorbent CaNiAl-LDH.	198
VI.5	FESEM images of the adsorbent at different magnifications (100 nm, 200 nm and 1µm).	199
VI.6	Non-linear adsorption isotherm curves based on Langmuir, Freundlich and Temkin model for adsorption of (a) Congo red dye (b) Methyl orange dye.	200

ake over CaNiAl-LDH. 20)2
er (b) Pseudo-second-order (c) 20)4
er (b) Pseudo-second-order (c) 20)5
CaNiAl-LDH. 20)6
)7
lye. 20)8
ers in CR adsorption. 20)9
emoval of Congo red dye from 21	1
	r (b) Pseudo-second-order (c) 20 r (b) Pseudo-second-order (c) 20 CaNiAl-LDH. 20 ye. 20 vers in CR adsorption. 20