# STUDY ON GLUCOSE-6-PHOSPHATE DEHYDROGENASE (G6PD) VARIANTS AND ITS ASSOCIATION WITH HAEMOGLOBINOPATHIES AMONG THE TRIBAL POPULATION OF MALARIA ENDEMIC INDO-BHUTAN BORDER DISTRICTS OF BTR, ASSAM, INDIA.



A Thesis submitted to Bodoland University for the Degree of Doctor of Philosophy in Biotechnology in the Faculty of Science and Technology, 2023

By

# NOYMI BASUMATARY

### Registration no.- FINAL/03BIO0022 of 2017-18

**Department of Biotechnology** 

Bodoland University, Kokrajhar-783370

Assam, India

### DECLARATION

I do hereby declare that the research work embodied in this thesis entitled "Study on Glucose-6-Phosphate Dehydrogenase (G6PD) variants and its association with haemoglobinopathies among the tribal population of malaria endemic Indo-Bhutan border districts of BTR, Assam, India" has been carried out by me under direct guidance and supervision of Prof. (Dr.) Jatin Sarmah, Department of Biotechnology, Bodoland University, Kokrajhar, Assam, India.

The work is original and has not been submitted in part or in full for any degree or diploma to any university.

Date: 22/01/24 Place: Bedeland University

Nopui Basuaratary

(NOYMI BASUMATARY)



# **BODOLAND UNIVERSITY, KOKRAJHAR**

Debargaon, P.O. Rangalikhata Kokrajhar - 783370, BTAD, Assam.

From,

Date: 22,01.2024

Prof. (Dr.) Jatin Sarmah Department of Biotechnology Bodoland University Kokrajhar, Assam Email: jatinsarmahindia@gmail.com

#### CERTIFICATE

This is to certify that the thesis entitled "Study on Glucose-6-Phosphate Dehydrogenase (G6PD) variants and its association with haemoglobinopathies among the tribal population of malaria endemic Indo-Bhutan border districts of BTR, Assam, India", which has been submitted by Miss Noymi Basumatary for the award of the degree of Doctor of Philosophy under Bodoland University is a record of original research works carried out by her under my direct guidance and supervision. She has fulfilled all the requirements for submitting the thesis.

The results embodied in the thesis have not been submitted to any other university or institution for the award of any degree or diploma.

01

(JATIN SARMAH) Professor, Department of Biotechnology Bodoland University Kokrajhar, Assam, India

> DR. JATIN SARMAH Professor, Department of Biotechnology Bodoland University, Kokrajhar Assam, India.

#### ACKNOWLEDGEMENT

Towards the end of this journey, I take this opportunity to express my heartfelt gratitude to the people who stood by me and extended their support in various ways during the tenure of my study. Above all, I thank Almighty God for his showers of blessings throughout my Ph.D. journey.

I express my sincere gratitude to Prof. Laishram Ladoo Singh, Honourable Vice-Chancellor, Dr. Subung Basumatary, Registrar, and Dr. Manjil Basumatary, Academic Registrar, Bodoland University for providing the facilities and environment to pursue my work.

I owe my sincere gratitude to my Ph. D. Supervisor, Prof. (Dr.) Jatin Sarmah, Department of Biotechnology, Bodoland University. I am deeply indebted to him for his constant guidance, encouragement and support throughout the journey of my Ph.D. work.

I convey my sincere gratitude to Prof. Sandeep Das, Head, Department of Biotechnology Bodoland University, for providing the necessary departmental facilities and rendering all possible assistance during the course of my research. I also thank Sir for allowing me to access the facilities of DBT-Biotech Hub and Technology Incubation centre, Bodoland University.

Acknowledgement is due to all faculty members of the department namely, Dr. Sharmistha Brahma Kour, Dr. Silistina Narzari, Dr. Arvind Kumar Goyal, Mrs. Jonali Owary and Dr. Monoranjan Boro for their words of wisdom and encouragement throughout the study period.

I am indebted to the Lady Tata Memorial Trust, Mumbai, for providing me financial assistance for completion of my work. I also thank the BTR Government for providing financial support during the initial stage of my work.

My heartfelt gratitude to Prof. Paresh Kumar Sarma, Department of Medicine, Dhubri Medical College and Hospital, Dhubri and Dr. Dipankar Baruah, Associate Professor, Department of Pathology, Gauhati Medical College and Hospital, Guwahati for their constant guidance and support in analyzing the medical reports of the patients.

I express my gratitude to the Superintendents and Co-ordinators of Hindlabs laboratories of Udalguri Civil Hospital and Kokrajhar Civil Hospital for allowing me to perform the haematological tests. I also thank the lab technicians of Hindlabs laboratories of both the hospitals for helping me to carry out the tests.

I acknowledge Dr. Anil Agarwala, Pathologist, Mr. Ritupal Baruah and Mr. Gyanendra Barman, Lab technicians of Arya Wellness Centre, Guwahati for helping me in Haemoglobin typing of the samples.

I also express my sincere thanks to Dr. Rajiv Chandra Dev Goswami and Mr. Kamal Gauli, Biotech Park, Guwahati for allowing and helping me to perform part of my research work at their centre.

My acknowledgement is also due to Dr. Manab Deka, Associate Professor, Arya Vidyapeeth College, Guwahati for helping me in statistical analysis.

I wish to acknowledge the Medical Officers, Managers and medical staffs of the tea estates and the village heads for allowing and helping me in collection of blood samples. I also thank Mr. Ankur Sarma and Miss Bidang Basumatary for helping me in collection of blood samples.

I gratefully acknowledge my labmates, Miss Trisha Sonowal, Miss Rijumoni Daimari, Mr. Nerswn Basumatary, Miss Seema Khakhalary and all my fellow scholars for their constant kind support throughout my Ph.D. journey.

I express my heartfelt thanks to Mr. Chandan Brahma, Mr. Hirak Moni Borgoyary and Mr. Paban Ray for their help and support.

Finally, I take this opportunity to pay my sincerest thanks to my parents, Mr. Guneswar Basumatary and Mrs. Sabita Basumatary for their sacrifices and tireless efforts towards me which can never be replenished by any words of gratitude. I also extend my special thanks to my sister, Miss Niru Basumatary, my friends, Mr. Dominic Narzary, Miss Manita Daimari, Miss Nitisha Boro, Mrs. Abhijita Daimari for their constant love, support and encouragement throughout the course of my research.

Nophi Basunalary

(Noymi Basumatary)

## LIST OF TABLES

| Table no. | Title                                                                 | Page no. |
|-----------|-----------------------------------------------------------------------|----------|
| 1         | Classification of G6PD variants by WHO (1989).                        | 7        |
| 2         | List of drugs to be avoided by G6PD deficient patients (Frank, 2005). | 8        |
| 3         | List of drugs to be used with caution in G6PD deficient patients      | 9-10     |
|           | (Beutler, 2008; Younster et al., 2010; Bubp et al., 2015).            |          |
| 4         | Types of structural disorders of haemoglobin.                         | 12-13    |
| 5         | Types of thalassaemia syndromes.                                      | 13-15    |
| 6         | G6PD variants reported from Southeast Asia.                           | 24-29    |
| 7         | G6PD variants and mutations identified among the Indians.             | 30-31    |
| 8         | Types of mutations involved in G6PD deficiency.                       | 34       |
| 9         | Location of mutations reported in <i>g6pd</i> gene.                   | 34-35    |
| 10        | District wise villages and tea estates covered in the study.          | 46-47    |
| 11        | Interpretation of the device's reading as per WHO recommended         | 49       |
|           | range.                                                                |          |
| 12        | Details of primers used for exon-wise amplification of g6pd gene.     | 52-53    |
| 13        | Standardization of PCR settings for each exon.                        | 53       |
| 14        | Details of restriction endonucleases used for detection of mutation.  | 54-55    |
| 15        | Result of G6PD screening in four districts of BTR, Assam.             | 61       |
| 16        | Results of Hb-typing of anaemic subjects.                             | 63       |
| 17        | Mean ± SD of Hb types in different categories of                      | 64       |
|           | haemoglobinopathies.                                                  |          |
| 18        | Mean $\pm$ SD values of RBC parameters and platelets, and Pearson     | 65       |
|           | correlation coefficient with G6PD along with p-values.                |          |
| 19        | Mean $\pm$ SD values of WBC parameters and Pearson correlation        | 65-66    |
|           | coefficient with G6PD along with p-values.                            |          |
| 20        | Cross tabulation between G6PD deficiency and gender.                  | 66       |
| 21        | Binding affinities of the antioxidants with the 3D structures of the  | 93-94    |

G6PD variants.

| 22 | Drug-likeness and ADME properties of the compounds.               | 95-97   |
|----|-------------------------------------------------------------------|---------|
| 23 | Toxicity analysis of the ligands.                                 | 98-101  |
| 24 | Amino acid residues of the ligands interacting with the variants. | 102-107 |
| 25 | Mean $\pm$ SD values of RMSD, RMSF, Rg and SASA of G6PD           | 115     |
|    | variants.                                                         |         |
| 26 | Mean $\pm$ SD values of RMSD, RMSF, Rg and SASA of G6PD variant   | 125     |
|    | complexed with the ligand.                                        |         |

## LIST OF FIGURES

| Figure no. | Title                                                                                                                                                                    | Page no. |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 1          | Diagrammatic representation of NADPH generation via Pentose phosphate pathway.                                                                                           | 3        |
| 2          | Role of G6PD in defense mechanism against oxidative attack (Luzzatto <i>et al.</i> , 2016).                                                                              | 3        |
| 3          | Location of g6pd gene (Gomez-Manzo et al., 2016).                                                                                                                        | 5        |
| 4          | Crystal structure of G6PD enzyme in dimeric form (Gomez-Manzo et al., 2016).                                                                                             | 5        |
| 5          | Graphical representation of $g \delta p d$ gene and mutations from India.                                                                                                | 7        |
| 6          | Map of the study site.                                                                                                                                                   | 48       |
| 7          | G6PD status of the study subjects.                                                                                                                                       | 62       |
| 8          | Images of genomic DNA run on 0.8% agarose gel electrophoresis.<br>M $\rightarrow$ 1kb DNA ladder and lanes 1-12 $\rightarrow$ genomic DNA of the G6PD deficient samples. | 68       |
| 9          | Agarose gel electrophoresis images of PCR products of exon 3. M<br>$\rightarrow$ 100bp ladder, lanes 1-12 $\rightarrow$ 352bp PCR products of exon 3.                    | 68       |
| 10         | Agarose gel electrophoresis images of PCR products of exon 4. M<br>$\rightarrow$ 100bp ladder, lanes 1-12 $\rightarrow$ 314bp PCR products of exon 4.                    | 68       |
| 11         | Agarose gel electrophoresis images of PCR products of exons 4-5.<br>M $\rightarrow$ 100bp ladder, lanes 1-12 $\rightarrow$ 701bp PCR products of exons 4-5.              | 70       |
| 12         | Agarose gel electrophoresis images of PCR products of exons 6-7.<br>M $\rightarrow$ 100bp ladder, lanes 1-12 $\rightarrow$ 545bp PCR products of exons 6-7.              | 70       |
| 13         | Agarose gel electrophoresis images of PCR products of exon 9. M<br>$\rightarrow$ 100bp ladder, lanes 1-12 $\rightarrow$ 276bp PCR products of exon 9.                    | 70       |
| 14         | Agarose gel electrophoresis images of PCR products of exon 10. M                                                                                                         | 72       |

 $\rightarrow$  100bp ladder, lanes 1-12  $\rightarrow$  342bp PCR products of exon 10.

- 15 Agarose gel electrophoresis images of PCR products of exon 11. M 72  $\rightarrow$  100bp ladder, lanes 1-12  $\rightarrow$  214bp PCR products of exon 11. 16 Agarose gel electrophoresis images of PCR products of exon 12. M 72  $\rightarrow$  100bp ladder, lanes 1-12  $\rightarrow$  227bp PCR products of exon 12. 17 Agarose gel electrophoresis of PCR products digested with HaeIII 74 (Orissa 131C>G). M  $\rightarrow$  100bp DNA ladder, lane 1  $\rightarrow$  undigested PCR product of exon 3, lanes 4, lanes 2, 3, 5, 6,  $10-12 \rightarrow 131C>G$ mutation is present, lanes  $7-9 \rightarrow 131C>G$  mutation is absent. 18 74 Agarose gel electrophoresis of PCR products digested with NlaIII (Namoru 208T>C). M  $\rightarrow$  100bp DNA ladder, lane 1  $\rightarrow$  undigested PCR product of exon 4, lanes  $2-12 \rightarrow \text{mutation } 208T > C$  was absent in all samples. 19 Agarose gel electrophoresis of PCR products digested with FokI (A<sup>+</sup> 74 376A>G). M  $\rightarrow$  100bp DNA ladder, lane 1  $\rightarrow$  undigested PCR product of exons 4-5, lanes 5,  $6 \rightarrow 376$  A>G mutation is present, lanes 2-4, 7-12  $\rightarrow$  376 A>G mutation is absent. Agarose gel electrophoresis of PCR products digested with NlaIII 20 76 (A<sup>-202</sup> G>A). M  $\rightarrow$  100bp DNA ladder, lane 1  $\rightarrow$  undigested PCR product of exons 4-5, lanes  $2-12 \rightarrow$  mutation 202G>A was absent in all samples. 21 76 Agarose gel electrophoresis of PCR products digested with HindIII (Mahidol 487G>A). M  $\rightarrow$  100bp DNA ladder, lane 1  $\rightarrow$  undigested PCR product of exons 6-7, lanes 2,  $3 \rightarrow 487$ G>A mutation is present. Agarose gel electrophoresis of PCR products digested with MboII 22 76 (Mediterranean 563C>T). M  $\rightarrow$  100bp DNA ladder, lane 1  $\rightarrow$ undigested PCR product of exons 6-7, lanes 2-4 & 6  $\rightarrow$  563C>T mutation is present, lanes 5 & 7  $\rightarrow$  563C>T mutation is absent. 23 Agarose gel electrophoresis of PCR products digested with BstUI 78 (Acores 595 A>G). M  $\rightarrow$  100bp DNA ladder, lane 1  $\rightarrow$  undigested PCR product of exons 6-7, lanes  $2-12 \rightarrow 595$  A>G mutation is absent.
- Agarose gel electrophoresis of PCR products digested with MnII 78

(Kalyan-Kerala/ Jamnagar / Rohini 949G>A). M  $\rightarrow$  100bp DNA ladder, lane 1  $\rightarrow$  undigested PCR product of exon 9, lanes 2, 3  $\rightarrow$  949 G>A mutation is present, lanes 4-10  $\rightarrow$  949G>A mutation is absent.

- 25 Agarose gel electrophoresis of PCR products digested with BstXI 78 (Chatham (1003G>A). M  $\rightarrow$  100bp DNA ladder, lane 1  $\rightarrow$  undigested PCR product of exon 9, lanes 2-12  $\rightarrow$  1003G>A mutation is absent.
- 26 Agarose gel electrophoresis of PCR products digested with HhaI 81 (Guadalajara 1159C>T). M  $\rightarrow$  100bp DNA ladder, lane 1  $\rightarrow$  undigested PCR product of exon 10, lanes 2-12  $\rightarrow$  1159C>T mutation was absent in all samples.
- 27 Agarose gel electrophoresis of PCR products digested with HhaI 81 (Union 1360C>T). M  $\rightarrow$  100bp DNA ladder, lane 1  $\rightarrow$  undigested PCR product of exon 11, lanes 2-12  $\rightarrow$  1360C>T mutation was absent.
- 28 Agarose gel electrophoresis of PCR products digested with AfIII 81 (Canton 1376G>T). M  $\rightarrow$  100bp DNA ladder, lane 1  $\rightarrow$  undigested PCR product of exon 12, lanes 2-12  $\rightarrow$  1376G>T mutation was absent.
- Agarose gel electrophoresis of PCR products digested with NdeI
  Kaiping 1388G>A). M → 100bp DNA ladder, lane 1 → undigested
  PCR product of exon 12, lanes 2-12 → 1388G>A mutation was absent.
- 30Frequency of G6PD variants detected in the study.83

83

- 31 Gender-wise distribution of G6PD variants.
- 32 Modeled structure and validation of G6PD Orissa variant. (a) G6PD 86 Orissa modeled using I-TASSER. (b) Validation of G6PD Orissa by ProTSAV.
- of G6PD 33 Modeled structure and validation Kalyan-86 Kerala/Jamnagar/Rohini variant. (a) G6PD Kalyan-Kerala/Jamnagar/Rohini modeled using I-TASSER. (b) Validation of G6PD Kalyan-Kerala/Jamnagar/Rohini by ProTSAV.

| 34 | Modeled structure and validation of G6PD Mahidol variant. (a) G6PD Mahidol modeled using I-TASSER. (b) Validation of G6PD Mahidol by ProTSAV.                                                                     | 87    |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 35 | Modeled structure and validation of G6PD $A^+$ variant. (a) G6PD $A^+$ modeled using I-TASSER. (b) Validation of G6PD $A^+$ by ProTSAV.                                                                           | 87    |
| 36 | 2D structures of antioxidant compounds downloaded from Pubchem.                                                                                                                                                   | 89-91 |
| 37 | 3D and 2D visualization of docking of Orissa and Myricetin. (a) 3D interaction between Orissa and Myricetin. (b) 2D interaction between Orissa and Myricetin.                                                     | 109   |
| 38 | <ul><li>3D and 2D visualization of docking of Kalyan-Kerala and Apigenin.</li><li>(a) 3D interaction between Kalyan-Kerala and Apigenin.</li><li>(b) 2D interaction between Kalyan-Kerala and Apigenin.</li></ul> | 109   |
| 39 | 3D and 2D visualization of docking of Mahidol and Catechin. (a)<br>3D interaction between Mahidol and Catechin. (b) 2D interaction<br>between Mahidol and Catechin.                                               | 110   |
| 40 | 3D and 2D visualization of docking of $A^+$ and Daidzen. (a) 3D interaction between $A^+$ and Daidzen. (b) 2D interaction between $A^+$ and Daidzen.                                                              | 110   |
| 41 | RMSD of the WT protein and the G6PD variants.                                                                                                                                                                     | 113   |
| 42 | RMSF of the WT protein and the variants.                                                                                                                                                                          | 113   |
| 43 | RG of the WT protein and the variants.                                                                                                                                                                            | 114   |
| 44 | SASA of the WT protein and the variants.                                                                                                                                                                          | 114   |
| 45 | RMSD of the WT protein, Orissa and Orissa complexed with Myricetin.                                                                                                                                               | 117   |
| 46 | RMSF of the WT protein, Orissa and Orissa complexed with Myricetin.                                                                                                                                               | 117   |
| 47 | RG of the WT protein, Orissa and Orissa complexed with Myricetin.                                                                                                                                                 | 118   |
| 48 | SASA of the WT protein, Orissa and Orissa complexed with                                                                                                                                                          | 118   |

Myricetin.

| 49 | RMSD of the WT protein, Kalyan-Kerala and Kalyan-Kerala complexed with Apigenin. | 120 |
|----|----------------------------------------------------------------------------------|-----|
| 50 | RMSF of the WT protein, Kalyan-Kerala and Kalyan-Kerala complexed with Apigenin. | 120 |
| 51 | Rg of the WT protein, Kalyan-Kerala and Kalyan-Kerala complexed with Apigenin.   | 121 |
| 52 | SASA of the WT protein, Kalyan-Kerala and Kalyan-Kerala complexed with Apigenin. | 121 |
| 53 | RMSD of the WT protein, Mahidol and Mahidol complexed with Catechin.             | 123 |
| 54 | RMSF of the WT protein, Mahidol and Mahidol complexed with Catechin.             | 123 |
| 55 | RG of the WT protein, Mahidol and Mahidol complexed with Catechin.               | 124 |
| 56 | SASA of the WT protein, Mahidol and Mahidol complexed with Catechin.             | 124 |
| 57 | RMSD of the WT protein, $A^+$ and $A^+$ complexed with Daidzen.                  | 126 |
| 58 | RMSF of the WT protein, $A^+$ and $A^+$ complexed with Daidzen.                  | 126 |
| 59 | RG of the WT protein, $A^+$ and $A^+$ complexed with Daidzen.                    | 127 |
| 60 | SASA of the WT protein, $A^+$ and $A^+$ complexed with Daidzen.                  | 127 |

## **ABBREVIATIONS**

| G6PD:     | Glucose-6-Phosphate Dehydrogense                     |
|-----------|------------------------------------------------------|
| PPP:      | Pentose Phosphate Pathway                            |
| NADPH:    | Nicotinamide Adenine Dinucleotide Phosphate Hydrogen |
| ROS:      | Reactive Oxygen Species                              |
| GSH:      | Glutathione                                          |
| RBC:      | Red Blood Cell                                       |
| WHO:      | World Health Organization                            |
| P. vivax: | Plasmodium vivax                                     |
| P. ovale: | Plasmodium ovale                                     |
| Hb:       | Haemoglobin                                          |
| HbS:      | Haemoglobin S                                        |
| HbE :     | Haemoglobin E                                        |
| HbC:      | Haemoglobin C                                        |
| HbSS:     | Haemoglobin S homozygous                             |
| HbCC:     | Haemoglobin C homozygous                             |
| Hb AE:    | Haemoglobin E heterozygous                           |
| Glu:      | Glutamine                                            |
| Lys:      | Lysine                                               |
| Arg:      | Arginine                                             |
| Trp:      | Tryptophan                                           |
| His:      | Histidine                                            |
| Met:      | Methionine                                           |
| Thr:      | Threonine                                            |

| Ala:  | Alanine                                      |
|-------|----------------------------------------------|
| Gly:  | Glycine                                      |
| Ile:  | Isoleucine                                   |
| Cys:  | Cystein                                      |
| Phe:  | Phenylalanine                                |
| Val:  | Valine                                       |
| Tyr:  | Tyrosine                                     |
| Ser:  | Serine                                       |
| Pro:  | Proline                                      |
| Asp:  | Aspartic acid                                |
| Asn:  | Asparagine                                   |
| NR:   | Not reported                                 |
| HbD:  | Haemoglobin D                                |
| NHM:  | National Helth Mission                       |
| HPFH: | Hereditary Persistence of Foetal Haemoglobin |
| HbQ:  | Haemoglobin Q                                |
| HbK:  | Haemoglobin K                                |
| NAC:  | N-acetyl-cysteine                            |
| LC:   | L-cysteine                                   |
| TCA:  | Tricarboxylic acid                           |
| ME1:  | Malic enzyme 1                               |
| IDH1: | Isocitrate dehydrogenase 1                   |
| CADD: | Computer-aided drug design                   |
| MD:   | Molecular dynamics                           |
| BTR:  | Bodoland Territorial Region                  |
|       |                                              |

| CBC:        | Complete Blood Count                       |
|-------------|--------------------------------------------|
| WBC:        | White Blood Cell                           |
| MCV:        | Mean Corpuscular Volume                    |
| MCH:        | Mean Corpuscular Haemoglobin               |
| MCHC:       | Mean Corpuscular Haemoglobin Concentration |
| PCV:        | Packed Cell Volume                         |
| RDW:        | Red Cell Distribution Width                |
| SPSS:       | Statistical Package for Social Sciences    |
| Buffer AL:  | Lysis buffer                               |
| Buffer AW1: | Wash buffer 1                              |
| Buffer AW2: | Wash buffer 2                              |
| Buffer AE:  | Elution buffer                             |
| DF:         | Dilution factor                            |
| bp:         | Base pair                                  |
| Taq:        | Thermus aquaticus                          |
| PCR:        | Polymerase Chain Reaction                  |
| HaeIII:     | Haemophilus aegyptus III                   |
| NlaIII:     | Neisseria lactamica III                    |
| FokI:       | Flavobacterium okeanokoites I              |
| HindIII:    | Haemophilus influenza III                  |
| MboII:      | Moraxella bovis II                         |
| BstUI:      | Bacillus stearothermophilus I              |
| BstXI:      | Bacillus stearothermophilus X I            |
| HhaI:       | Haemophilus haemolyticus I                 |
| AfIII:      | Anabaena flosaquae II                      |

| NdeI:              | Neisseria denitrificans I                                              |
|--------------------|------------------------------------------------------------------------|
| RCSB PDB:          | Research Collaboratory for Structural Bioinformatics Protein Data Bank |
| ADT:               | AutoDock Tool                                                          |
| MS:                | Molecular Surface                                                      |
| ADMET:             | Absorption, Distribution, Metabolism, Excretion and Toxicity           |
| GROMACS:           | GROningen Machine for Chemical Simulations                             |
| GROMOS:            | GROningen Molecular Simulation                                         |
| SPCE:              | Simulation Program with Integrated Circuit Emphasis                    |
| NaCl:              | Sodium Chloride                                                        |
| NTP:               | Number of particles, pressure and temperature                          |
| RMSD:              | Root Mean Square Deviation                                             |
| RMSF:              | Root Mean Square Fluctuation                                           |
| RG:                | Radius of Gyration                                                     |
| SASA:              | Solvent Accessibility Surface Area                                     |
| HbA <sub>0</sub> : | Adult haemoglobin                                                      |
| HbA <sub>2</sub> : | Smaller component of adult haemoglobin                                 |
| SD:                | Standard deviation                                                     |
| TLC:               | Total leucocyte count                                                  |
| LYM:               | Lymphocytes                                                            |
| A <sub>260</sub> : | Absorbance at 260nm                                                    |
| A <sub>280</sub> : | Absorbance at 280nm                                                    |
| 3D:                | Three dimensional                                                      |
| 2D:                | Two dimensional                                                        |
| MW:                | Molecular weight                                                       |
| TPSA:              | Topological polar surface area                                         |

| HbA:   | Hydrogen bond acceptor                    |
|--------|-------------------------------------------|
| HbD:   | Hydrogen bond donor                       |
| LD50:  | Lethal dose                               |
| CNSHA: | Chronic non-spherocytic hemolytic anaemia |
| Ki:    | Inhibition constant                       |
| Km:    | Michaelis constant                        |
|        |                                           |

## **STANDARD UNITS**

| km <sup>2</sup> : | Square kilometre             |
|-------------------|------------------------------|
| mg:               | Milligram                    |
| kg:               | Kilogram                     |
| μ1:               | Microlitre                   |
| U/g:              | Units per gram               |
| g/dL:             | Gram per decilitre           |
| ml:               | Millilitre                   |
| Million/Cumm:     | Miilion per cubic millimetre |
| pg:               | Picogram                     |
| Cells/Cumm :      | Cells per cubic millimeter   |
| fL:               | Femtolitre                   |
| Å:                | Angstrom                     |
| mM:               | Millimolar                   |
| nm:               | Nanomolar                    |
| μg/ml:            | Microgram per millilitre     |
| kcal/mol:         | Kilocalorie per mole         |
| Da:               | Dalton                       |
|                   |                              |