A STUDY ON THE BIOCHEMICAL AND IMMUNOLOGICAL RESPONSES OF SILKWORM SAMIA RICINI FED ON DIFFERENT HOST PLANTS

THESIS

SUBMITTED TO THE BODOLAND UNIVERSITY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN ZOOLOGY UNDER THE FACULTY OF SCIENCE AND TECHNOLOGY

\mathbf{BY}

FANGLENG NARZARY
REGISTRATION NO. FINAL/ZOO 0004 of 2016-17
DEPARTMENT OF ZOOLOGY
BODOLAND UNIVERSITY, ASSAM, INDIA
2024

DECLARATION

I, do, hereby declare that the thesis entitled "A study on the biochemical and
immunological responses of silkworm Samia ricini fed on different host plants" submitted by
$me\ is\ the\ result\ of\ my\ own\ work\ done\ under\ the\ guidance\ of\ Dr.\ Dulur\ Brahma.\ Ifurther\ declared the guidance\ of\ Dr.\ Dulur\ Brahma.$
that the work reported in this thesis has not been submitted by me anywhere, fully or partially
for the award of any degree or diploma in any other university.

Date: Place: Fangleng Narzary Department of Zoology Bodoland University

BODOLAND UNIVERSITY::DEPARTMENT OF ZOOLOGY

DEBARGAON, RANGALIKHATA, KOKRAJHAR-783370, BTR ASSAM

DR. DULUR BRAHMA

ASSISTANT PROFESSOR

Email:brahmadulur@gmail.com

Contact No.+91 9101348701

Ref. No.: BU/ZOO-DEPTT./DB-PF/PhDThesis/CF/02

Date:

CERTIFICATE

This is to certify that the thesis entitled "A study on the biochemical and immunological responses of silkworm Samia ricini fed on different host plants" is an independent research work of Fangleng Narzary, Regd. No.: FINAL/ZOO 0004 of 2016-17, PhD Fellow, Bodoland University, Assam, carried out under my guidance and supervision in the Department of Zoology. This thesis is submitted to the Department of Zoology, Bodoland University for the award of Degree of Doctor of Philosophy (PhD) in Zoology under the Faculty of Science and Technology.

> Dr. Dulur Brahma PhD Supervisor Department of Zoology **Bodoland University**

ACKNOWLEDGEMENT

First and foremost, I would like to express my profound gratitude to my supervisor, Dr. Dulur Brahma, Assistant Professor, Department of Zoology, Bodoland University for guiding me with her valuable ideas, suggestions, encouragement, and patience throughout this research.

I would like to convey my thanks to the Department of Zoology, Bodoland University for providing infrastructures and all the necessary facilities needed during the research period. I owe my thanks to the former and present Head of Department of Zoology, Dr. Ananta Swargiary, Prof. Hilloljyoti Singha, and Dr. Kushal Chaudhary for their encouragement, valuable guidance and feedbacks that has helped me complete and enhance my research work. I am also very grateful to all the faculty members and non-teaching staff of the Dept. of Zoology, Bodoland University for their valuable support and guidance.

I am also thankful to Dr. Manjil Basumatary, Academic Registrar, Bodoland University and Dr. Prahlad Basumatary, D.S.W and former Deputy Registrar, Bodoland University for their presence, guidance and valuable suggestions and feedback during my Progress reports, Final registration, and Pre-submission seminars.

I am also grateful to Prof. Sujit Deka, Dean of Faculty of Science and Technology, Bodoland University for his guidance and valuable suggestions during my PhD journey for providing crucial feedback that has helped me enhance the quality of my research.

My sincere thanks are also due to Dr. Arvind Kumar Goyal, Asst. Professor, Dept. of Biotechnology, Prof. Sandeep Das, Dept. of Biotechnology, Prof. Sanjay Basumatary, Dept. of Chemistry for being there as subject expert during my Final registration and Pre-submission seminar and for their guidance, feedback, and encouragement throughout my PhD journey which has helped me in completing my research work.

I am also thankful to the faculty members of Dept. of Botany, Bodoland University for their supports and valuable suggestions during my PhD journey. Additionally, I am very grateful to Dr. Sanjib Baruah, Assistant Professor, Dept. of Botany for helping me in preparation of herbarium specimen and in identification of the host plants used for my research work.

I am highly grateful to National Fellowship Scheme for ST- Students, Ministry of Tribal Affairs, Govt. of India for extending financial assistance to carry out my research smoothly.

I am very much thankful to Smt. Rita Basumatary, who has helped me with rearing of silkworms without her, the research work wouldn't have been possible.

I would also like to extent my thanks to Guwahati Biotech. park, Dept. of Science, and technology-GoA, Amingaon, Guwahati for providing me the laboratory facilities and allowing me to carry out my research. Special acknowledgement is due to Dr. Rajib Chandra Dev Goswami, Research Associate, Guwahati Biotech Park, and Mr. Kamal Gauli, Technical Assistant, Guwahati Biotech Park for their valuable guidance and support in carrying out GC-MS analysis in their laboratory.

I would also like to thank Head of Proteomics, Sandor Life Sciences, Telangana, Hyderabad for accepting my request to carry out sample analysis for Amino acid analysis for my research work.

I am also thankful to the Head, SAIF-NEHU for allowing me to carry out Mineral analysis in their laboratory.

My thanks are also due to the Directorate of Sericulture, BTR, Kokrajhar and all the staff members for providing me with valuable information, help and support during my PhD period.

I am also grateful to Mr. Amit Mushahary, Laboratory Assistant, Dept. of Zoology, Bodoland University for his kind help and support throughout my PhD period.

I am forever grateful to my late parents for being my constant source of inspiration throughout my life. I am forever indebted to my late parents. I am deeply grateful to my husband, Dipak Basumatary, for his constant support, encouragement, and patience throughout my PhD journey. I am also grateful to my elder brother, Mr. Rwirup Narzary and

sister-in-law, Dr. Angelene Brahma for their support, encouragement, and interest in my academic achievements. Additionally, I would also like to extend my heartfelt thanks to all my family members including all my cousin brothers, sisters.

I would also like to acknowledge my lab mates Mr. Paris Basumatary, Ms. Hatharki Mwchahary and Mr. Rajib Ratan Kashyap for extending support during my journey. I am also thankful to all the PhD scholars of the Department of Zoology for their moral support and encouragement.

I would like to express my deepest gratitude to my friends, whose unwavering support and encouragement have been invaluable throughout this journey. Their presence has provided me with strength, laughter, and perspective during both the triumphs and challenges of my doctoral journey.

This thesis would not have been possible without the guidance and cooperation of several individuals who in a way or the other contributed and extended valuable substance in the preparation and completion of my research work. I am grateful to all of them.

(Fangleng Narzary)

LIST OF TABLES

Table No.	Title	Page No.
Table 4.1	Total hemocyte count of S. ricini fed on different	59
	host plants	
Table 4.2	Differential haemocyte count (DHC) of <i>S. ricini</i> fed on different host plants	60
Table 4.3	Larval duration (days) of S. ricini fed on different	62
	host plants during different seasons	
Table 4.4	Pupal duration (days) of <i>S. ricini</i> fed on different host	62
	plants during different seasons	
Table 4.5	Fecundity (Nos.) of <i>S. ricini</i> fed on different host plants during different seasons	63
Table 4.6	Hatching (%) of <i>S. ricini</i> fed on different host plants during different seasons	64
Table 4.7	Effective rate of rearing (%) of <i>S. ricini</i> fed on different host plants during different seasons	65
Table 4.8	Emergence rate (%) of S. ricini fed on different host	66
	plants during different seasons	
Table 4.9	Survival ratio (%) of S. ricini fed on different host	67
	plants during different seasons	
Table 4.10	Cocoon weight (g) of S. ricini fed on different host	68
	plants during different seasons	
Table 4.11	Shell weight (g) of <i>S. ricini</i> fed on different host plants during different seasons	69
Table 4.12	Shell ratio (%) of <i>S. ricini</i> fed on different host plants during different seasons	70
Table 4.13	Total soluble protein, total carbohydrate, and total	71
	amino acid content of haemolymph of S. ricini reared	
	on different host plants	
Table 4.14	Mineral content of <i>S. ricini</i> fed on different host plants	72
Table 4.15	Proximate analysis of larvae of S. ricini fed on	73
	different host plants	
Table 4.16	Proximate analysis of leaves of host plants used for	73
	rearing S. ricini	

Table 4.17	List of compounds recorded in extract of S. ricini fed	74
	on R. communis	
Table 4.18	List of compounds recorded in extract of <i>S. ricini</i> larvae fed on <i>M. esculenta</i>	75
Table 4.19	List of compounds recorded in extract of S. ricini fed	75
	on G. arborea	
Table 4.20	Table depicting the list of compounds recorded in	76
	extract of S. ricini larvae fed on H. fragrans	
Table 4.21	Table depicting the list of compounds recorded in extract of <i>S. ricini</i> larvae fed on <i>C. papaya</i>	77
Table 4.22	Free amino acid profiling (% mole) in the larvae of	81
	S. ricini fed on different host plants	
Table 4.23	IC ₅₀ values of DPPH and ABTS scavenging activity of <i>S. ricini</i> fed on different host plants	84

LIST OF FIGURES

Figure No.	Title	Page No.
Figure 1	Taxonomic classification of eri silkworm, Samia	3
	ricini	
Figure 2	Map of Kokrajhar district, Assam	38
Figure 4.1	Meteorological data of different seasons	57
Figure 4.2	GC-MS chromatogram of larval extract of eri S.	78
	ricini fed in a) R. communis, b) M. esculenta, c) G.	
	arborea, d) H. fragrans and e) C. papaya	
	respectively	
Figure 4.3	2D structure of compounds found in the GC-MS	79
	larval extract of S. ricini	
Figure 4.4	UPLC Chromatogram of larval extract of S. ricini	82
	fed on a) R. communis, b) M. esculenta, c) G.	
	arborea, d) H. fragrans and e) C. papaya	
	respectively	
Figure 4.5	FRAP activity of S. ricini fed using different host	83
	plants	
Figure 4.6	Percentage inhibition of DPPH free radical	85
	scavenging activity of S. ricini fed on different host	
	plants	
Figure 4.7	Percent inhibition of ABTS assay of S. ricini fed on	86
	different host plants	
Figure 4.8	Glutathione s-transferase enzyme activity of S. ricini	87
	fed using different host plants	
Figure 4.9	Catalase enzyme activity of S. ricini fed using	87
	different host plants	

LIST OF PLATES

Plate No.	Title	Page No.
Plate1	Photographs of S. ricini reared using different host	88
	plants	
Plate 2	Photographs of host plants used for rearing S. ricini	89
Plate 3	Photographs of herbarium specimens of host plants	90
	used for rearing S. ricini	