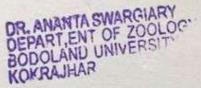


DEPARTMENT OF ZOOLOGY BODOLAND UNIVERSITY Debargaon, P.O. - Rangalikhata Kokrajhar - 783 370, BTAD, Assam


Dr. Ananta Swargiary, M.Sc., Ph.D. Assistant Professor

Ph. No.: +91-8638137477 Email: ananbuzoo101@gmail.com

CERTIFICATE

This is to certify that the thesis entitled "Study of anti-hyperglycemic property of traditionally used medicinal plants of Kokrajhar district, Assam" submitted by Manita Daimari (Date of Registration, 21st February, 2018, Regd. No-FINAL/ZOO/0002) for the award of PhD (Zoology) in Bodoland University is the result of her original research work completed under my supervision and guidance.

Dr. Ananta Swargiary Assistant Professor Department of Zoology Bodoland University, Kokrajhar

SELF-DECLARATION CERTIFICATE

I, Manita Daimari, hereby declare that the thesis entitled "Study of antihyperglycemic property of traditionally used medicinal plants of Kokrajhar district, Assam" is an original work and has been submitted by me for the award of Doctor of Philosophy in Bodoland University under the supervision of Dr. Ananta Swargiary. Further, I also declare that the thesis, or any part embodied in this thesis has not formed the basis for the award of any degree in this University or any other University.

Manita Daimari

Manita Daimari (Research Scholar) Department of Zoology Bodoland University, Kokrajhar Prov. Regd No: FINAL/ZOO/0002 of 2016-2017

 "Dedicated to my loving mother who instilled in me the virtues of perseverance and commitment and fuelled my determination to see this thesis through"

ACKNOWLEDGEMENT

Thanks to the Almighty, for his showers of blessings!

I express my deepest appreciation to my respected teacher and research guide Dr. Ananta Swargiary, Assistant Professor, Department of Zoology, for his unwavering guidance, and contributions that led to the completion of this research work. I also convey my profound gratitude for his meticulous support and leading me to the right direction being the most wise and trusted advisor. This thesis would not have been possible without his help and I find myself very fortunate to be in the encouraging environment and to be guided by him which has shape my professional and personal growth.

I am also indebted to the Heads of the Department of Zoology, Dr. Dulur Brahma, Prof. Hilloljyoti Sinha, and the present head Dr. Kushal Choudhury, for providing me all the necessary Departmental infrastructure and laboratory facilities. I would also extend my gratitude to DST-SERB for providing infrastructural and financial support to Dr. Ananta Swargiary, Department of Zoology. I am ever thankful to all the faculty members of the Department of Zoology for their encouragement and everlasting support.

I am very much thankful to Prof Sujit Deka, Dean, Faculty of Science and Technology, Bodoland University for his encouragement. I would also like to express my sincere gratitude to Prof. Sandeep Das, Head Department of Biotechnology, Prof. Jatin Sarmah, Department of Biotechnology, Prof. Sanjay Basumatary, Head, Department of Chemistry and Dr. Sarmistha Brahma Kaur Assistant Professor, Department of Biotechnology for their encouragement, guidance, and valuable suggestions.

I extend my sincere thanks to Minority of Tribal Affairs, Government of India for providing me NFST-fellowship for ST- students that helped me immensely to complete my research work.

I am blessed to meet my friends Nitisha Boro, Partha Pratim Sarma, Sanswrang Basumatary and my laboratory mates Mritunjoy Kumar Roy and Harmonjit Boro for their support in my research work. I am also grateful to all my friends, met during my research period, and my hostel friends for being available for me to assist whenever needed. I will always cherish their company.

My hearty thanks go to Guwahati Biotech Park, Chakraborty Enterprise, Kolkata, Veterinary College Khanapara, IASST Boragaon, Guwahati, ICMR branch, Guwahati Medical College and Hospital, and Department of Biotechnology, Bodoland University for providing me with the infrastructural facilities required during my research work. My special thanks go to Dr. Rajiv Chandra Dev Goswami for his great assistance in my experimental works.

My sincere thanks goes the Institutional Animal Ethics Committee, Bodoland University, for providing me ethical clearance to do animal work.

I am extremely grateful to all of the elderly persons and local healers, who, without hesitation, openly participated in the survey and contributed their expertise and knowledge about medicinal plants. I am overjoyed by their altruism.

I will always be indebted to my mother, Mrs. Sabitri Daimari, for being the most steadfast source of love, support, and encouragement I could possibly ask for. Words would be insufficient to express my gratitude towards her.

I am ever thankful to all my family members and village members for their continuous encouragement, inspiration and support throughout the tenure of this research work. I also take this opportunity to express my deep sense of gratitude to my husband Anupam Basumatary for his contributions, encouragement and support in the critical situations throughout the entire tenure of my research work.

> Manita Daimari Ph.D. Research Scholar

ABBREVIATIONS

μg	Micro gram
AAE	Ascorbic acid equivalent
AAS	Atomic Absorption Spectrometry
ABTS	2,2- Azino-bis-3-ethylbenzothiazoline-6-sulphonic acid assay
ADA	American Diabetes Association
AlCl ₃	Aluminium Chloride
ALP	Alkaline Phosphatase
ALT	Alanine Transaminase
AOT	Acute Oral Toxicity
AST	Aspartate Transaminase
BSA	Bovine Serum Albumin
bw	Body weight
Cd	Cadmium
CDB	Community Development Blocks
CDNB	1-Chloro, 2-4-Dinitrobenzene
Conc.	Concentrated
CPSEA	Committee for the purpose of Control and Supervision of Experiments on Animals
Cr	Chromium
CR-I	Castelli Index -I
CR-II	Castelli Index -II

CR-III	Castelli Index -III
Cu	Copper
DD	Double diabetes
dH ₂ 0	Distilled water
DKA	Diabetic Ketoacidosis
dL	Decilitre
DM	Diabetes Mellitus
DMSO	Dimethyl sulfoxide
DNS	Dinitro Salicylic Acid
DPP-4	Dipeptidyl peptidase-IV inhibitors
DPPH	2,2-Diphenyl-1-Picrylhydrazyl
EDTA	Ethylenediamine Tetra acetic acid
FC	Frequency of citation
FeCl ₃	Ferric Chloride
FeSO ₄	Ferrous Sulphate
FIV	Family Importance Value
FRAP	Ferric Reducing Antioxidant Power
FRDF	Ficus racemosa diethyl ether fraction
GDM	Gestational Diabetes
GSH	Reduced Glutathione
GST	Glutathione-S-transferase
H_2O_2	Hydrogen Peroxide
H_2SO_4	Sulphuric acid
HCl	Hydrochloride
HDL	High Density Lipoprotein
HNO ₃	Nitric acid

IDF	International Diabetes Federation
LDL	Low Density Lipoprotein
Μ	Mole
MDA	Malondialdehyde
mg	milligram
min	minute
mL	milliliter
mM	millimole
Mn	Manganese
Na ₂ CO ₃	Sodium Carbonate
NaOH	Sodium Hydroxide
Ni	Nickel
nm	Nanometer
O.D.	Optical Density
OECD	Organisation for Economic Co-operation and
	Development
OGTT	Oral Glucose Tolerance Test
Pb	Lead
pNPG	p-Nitrophenyl-α-D-glucopyranoside
QE	Quercetin equivalent
RFC	Relative Frequency of Citation
ROS	Reactive Oxygen Species
rpm	Revolutions per minute
SDS	Sodium Dodecyl Sulfate
SGLT-2	Sodium-Glucose cotransporter-2
STZ	Streptozotocin

T1DM	Type-I Diabetes Mellitus	
TAC	Total Antioxidant Capacity	
TBA	Thiobarbituric acid	
TBARS	Thiobarbituric Acid Reactive Substances	
TC	Total Cholesterol	
TCA	Trichloroacetic acid	
TFC	Total Flavonoid Content	
TIIDM	Type-II Diabetes Mellitus	
TIIDM TPC	Type-II Diabetes Mellitus Total Phenolic content	
	• •	
TPC	Total Phenolic content	
TPC TPTZ	Total Phenolic content 2,4,6-Tripyridyl-S-Triazine	
TPC TPTZ UV-Vis	Total Phenolic content 2,4,6-Tripyridyl-S-Triazine Ultraviolet-Visible	

List of tables

Table no.	Title	Page
		no.
Table 1.	Sub-types of Diabetes	04
Table 4.1.	List of villages where antidiabetic medicinal plants were	66
	collected along with the geographical location	
Table 4.2.	Demographic characteristics of informants interacted in	68
	Kokrajhar district Community Developmental Blocks	
Table 4.3.	Demographic characteristics of diabetic informants of Kokrajhar	68
	district CDBs	
Table 4.4.	Name of the plants, parts used, traditional formulation, and	72
	habit of plants	
Table 4.5.	Medicinal plants, wet weight, dried weight and the crude extract	79
	obtained	
Table 4.6.	Qualitative phytochemical test of methanolic crude extracts of	80
	plants	
Table 4.7.	Trace element concentration of medicinal plants (in ppm)	92
Table 4.8.	GC-MS profiles of the compounds identified from	100
	Andrographis paniculata	
Table 4.9.	GC-MS profiles of the compounds identified from Alstonia	101
	scholaris	
Table 4.10.	GC-MS profiles of the compounds identified from Clerodendrum	102
	infortunatum	
Table 4.11.	GC-MS profiles of the compounds identified from	102
	Hydrocotyle sibthorpioides	
Table 4.12.	GC-MS properties of compounds identified from Ficus	103
	racemosa	

Table 4.13.	GC-MS profiles of the compounds identified from Lindernia	104
	crustacea	
Table 4.14.	GC-MS profiles of the compounds identified from Musa	105
	balbisiana	
Table 4.15.	GC-MS profiles of the compounds identified from Oroxylum	106
	indicum	
Table 4.16.	GC-MS profiles of the compounds identified from Paspalum	107
	fimbriatum	
Table 4.1.7	GC-MS profiles of the compounds identified from Phlogacanthus	108
	thyrsiformis	
Table 4.18.	GC-MS profiles of the compounds identified from Rauvolfia	109
	tetraphylla.	
Table 4.19	IC50 values of different enzyme activity assays of methanolic plant	113
	extracts	
Table 4.20.	Hematological profile of FRDF-treated rat groups on chronic	120
	toxicity	
Table 4.21.	Biochemical parameters of FRDF-treated rat groups in the chronic	122
	toxicity study	
Table 4.22	Lipid profile of normal and FRDF-treated rats in the chronic	122
	toxicity study	
Table 4.23.	Cardiovascular risk index	123
Table 4.24.	Effect of diethyl ether fraction of Ficus racemosa on blood	128
	glucose	
Table 4.25.	Effect of diethyl fraction of Ficus racemosa on body weight	128
Table 4.26.	Liver function test of the normal and diabetic rats	130
Table 4.27.	Effect of diethyl fraction of Ficus racemosa on lipid moieties	130
Table 4.28.	Kidney function test in normal and diabetic rats	131
Table 4.29.	Antioxidant marker enzymes from tissues of normal and diabetic	134
	rats	

List of Figures

Figure no.	Titles	Page
		no.
Figure 3.1.	Template of ready-made questionnaire used during the survey of	33
	ethnomedicinal data	
Figure 3.2.	Preparation of crude extracts of plants. (a) Plant sample, (b) Air dried	36
	plant sample, (c) Powdered form, (d) Powder soaked in methanol, (e)	
	solvent filtration, and (f) Concentrated crude extract	
Figure 4.1.	Map of survey site. (a) red dot indicates data collection sites, and (b)	65
	data collection sites of antidiabetic healers	
Figure 4.2.	List of plants and citations by traditional healers	70
Figure 4.3.	Frequency of plant parts used during preparation of herbal medicines.	70
	wp-whole plant	
Figure 4.4.	Traditional formulations adopted by the traditional healers in the	71
	preparation of herbal remedies	
Figure 4.5.	Crude protein content of plant extracts. Values are represented as mean	83
	\pm standard deviation, n = 3 (number of experiments)	
Figure 4.6.	Carbohydrate content of plant extracts. Values are represented as mean \pm	83
	standard deviation, $n = 3$ (number of experiments)	
Figure 4.7.	Total phenolic content of plant extracts. Values are represented as mean	84
	\pm standard deviation, n = 3 (number of experiments)	
Figure 4.8.	Total flavonoid content of plant extracts. Values are represented as mean	84
	\pm standard deviation, n = 3 (number of experiments)	
Figure 4.9.	Total antioxidant activity of eleven plants. Values are represented as	87
	mean \pm standard deviation, n = 3 (number of experiments)	
Figure 4.10.	FRAP activity of eleven plants and reference chemical, ascorbic acid.	87
	Values are represented as mean \pm standard deviation, $n = 3$ (number of	
	experiments)	
Figure 4.11.	Dose-dependent percentage inhibition of DPPH free radical scavenging	88
	activity of plants Values are represented as mean \pm standard deviation, n	
	-	

= 3 (number of experiments)

- Figure 4.12. Dose-dependent percentage inhibition of ABTS free radical scavenging 89 activity of plants. Values are represented as mean ± standard deviation, n = 3 (number of experiments)
- Figure 4.13. Percentage inhibition of lipid peroxide scavenging activity Values are 90 represented as mean ± standard deviation, n = 3 (number of experiments)
- Figure 4.14. GC-MS chromatogram of *Andrographis paniculata* methanolic extract. 94
 (a) Chromatogram showing the retention time in min, and (b) Chromatograms showing the m/z value of the phytocompounds
- Figure 4.15. GC-MS chromatogram of *Alstonia scholaris* methanolic extract. (a) 95
 Chromatogram showing the retention time in min, and (b)
 Chromatograms showing the m/z value of the phytocompounds
- Figure 4.16. GC-MS chromatogram of *Clerodendrum infortunatum* methanolic 95 extract. (a) Chromatogram showing the retention time in min, and (b) Chromatograms showing the m/z value of the phytocompounds
- Figure 4.17. GC-MS chromatogram of methanolic extract of *Hydrocotyle* 96 *sibthorpioides*. (a) Chromatogram showing the retention time in min, and (b) Chromatograms showing the m/z value of the phytocompounds
- Figure 4.18. GC-MS chromatogram of methanolic extract of *Ficus racemosa*. (a) 96Chromatogram showing the retention time in min, and (b)Chromatograms showing the m/z value of the phytocompounds
- Figure 4.19. GC-MS chromatogram of methanolic extract of *Lindernia crustacea*. 97
 (a) Chromatogram showing the retention time in min and (b) Chromatograms showing the m/z value of the phytocompounds
- Figure 4.20. GC-MS chromatogram of methanolic extract of *Musa balbisiana*. (a) 97Chromatogram showing the retention time in min, and (b)Chromatograms showing the m/z value of the phytocompounds
- Figure 4.21. . GC-MS chromatogram of methanolic extract of *Oroxylum indicum*. (a) 98Chromatogram showing the retention time in min, and (b)Chromatograms showing the m/z value of the phytocompounds

- Figure 4.22. GC-MS chromatogram of methanolic extract of *Paspalum fimbriatum*. 98
 (a) Chromatogram showing the retention time in min, and (b) Chromatograms showing the m/z value of the phytocompounds
- Figure 4.23. GC-MS chromatogram of *Phlogacanthus thyrsiformis*. (a) 99
 Chromatogram showing the retention time in min, and (b)
 Chromatograms showing the m/z value of the phytocompounds
- Figure 4.24. GC-MS chromatogram of methanolic extract of *Ravoulfia tetraphylla*. 99
 (a) Chromatogram showing the retention time in min, and (b) Chromatograms showing the m/z value of the phytocompounds
- Figure 4.25. Activity of α -amylase on exposed to methanolic crude extracts of plant 111 and reference chemical, acarbose. Values are expressed as mean \pm SD, n = 3
- Figure 4.26. Activity of α -glucosidase on exposed to methanolic crude extracts of 112 different plant and reference chemical, acarbose. Values are expressed as mean \pm SD, n = 3
- Figure 4.27. Phytochemical content of different solvent fractions of *Ficus racemosa*. 115
 (a) Protein content, (b) Carbohydrate content, (c) Phenolic content, and
 (d) Flavonoid content. Values are expressed as mean ± SD, n = 3
- Figure 4.28. (a) Total antioxidant activity, and (b) Graph showing FRAP activity of 116 all the plants. Values are expressed as mean \pm SD, n = 3
- Figure 4.29. DPPH free radical scavenging activity of different solvent fractions of 116 *Ficus racemosa*. Values are expressed as mean ± SD; n = 3; *represents values in mg/mL
- Figure 4.30. ABTS free radical scavenging activity of different solvent fractions of 117 *Ficus racemosa*. Values are expressed as mean ± SD, n = 3; *IC₅₀ values in μg/mL, except hexane fraction (mg/mL)
- Figure 4.31. Lipid peroxidation inhibition activity of different solvent fractions of 117 *Ficus racemosa.* Values are expressed as mean \pm SD, n = 3
- **Figure 4.32.** Activity of α -amylase on exposed to *Ficus racemosa* different fractions **118** and acarbose Values are expressed as mean \pm SD, n = 3
- Figure 4.33. Activity of α -glucosidase on exposed to *Ficus racemosa* different 118 fractions and acarbose. Values are expressed as mean \pm SD, n = 3

- Figure 4.34. Evaluation of oral glucose tolerance test in glucose-loaded rats when 125 treated with FRDF, (a) OGTT test on normal control rats, and (b) OGTT on diabetic rats. Values are represented in mean ± SD, n = 3
- Figure 4.35. Histological pattern of liver in experimental rats in 40x magnification, 136 H&E stain. (a) normal control rats, (b) diabetic control rats, (c) diabetic rats treated with glibenclamide, (d) diabetic rats treated with 100 mg FRDF, and (e) Diabetic rats treated with 200 mg FRDF. 'v' vacuolation; '□' sinusoids; 'K' Kupffer cells; CV- Central vein; PV- Portal vein; '*' represents inflammatory cells and steatosis
- Figure 4.36. Morphological changes in kidney in experimental rats 40x magnification 137 H&E stain. (a) Normal control rats, (b) Diabetic control rats, (c) Diabetic rats treated with glibenclamide, (d) Diabetic rats treated with 100 mg FRDF, and (e) Diabetic rats treated with 200 mg FRDF. Green arrow- Distal convoluted tubule; blue arrow- Proximal convoluted tubule; PL- Parietal layer of glomerulus; '↔' represents Bowman's space

List of Photo	plates
---------------	--------

Sl. no.	Particulars	Page No.
1.	Photo plate - I	35
2.	Photo plate - II	53
3.	Photo plate - III	77
4.	Photo plate - IV	78