BIODIESEL PRODUCTION FROM NON-EDIBLE OIL VIA TRANSESTERIFICATION REACTION USING HETEROGENEOUS CATALYST DERIVED FROM POST-HARVEST PLANTS

A THESIS

SUBMITTED TO BODOLAND UNIVERSITY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN CHEMISTRY IN THE FACULTY OF SCIENCE AND TECHNOLOGY

SUBMITTED BY BIDANGSHRI BASUMATARY DEPARTMENT OF CHEMISTRY BODOLAND UNIVERSITY, KOKRAJHAR–783370, INDIA APRIL, 2024

Dedicated to my dearest father, mother, aunt,

husband, mentors and teachers

BODOLAND UNIVERSITY DEPARTMENT OF CHEMISTRY Debargaon, P.O. Rangalikhata Kokrajhar - 783 370, BTR, Assam, India

Dr. Sanjay Basumatary, M.Sc., Ph.D. Professor & Head

Tel: +91 (9954336448; 7002166299) Email: waytosanjay12@gmail.com

April 10, 2024

Certificate

This is to certify that the work described in the thesis entitled *Biodiesel production from non-edible oil via transesterification reaction using heterogeneous catalyst derived from post-harvest plants* was carried out by Ms. Bidangshri Basumatary in the Department of Chemistry, Bodoland University, Kokrajhar, under my guidance and supervision. Ms. Bidangshri Basumatary has fulfilled all the requirements under Ph.D. rules and regulations of Bodoland University for submitting her thesis for the award of Ph.D. degree. The thesis is the result of her own-investigation, and no part of the thesis is submitted for any other degree or diploma to this or any other university.

10-04-2024

(S. Basumatary)

Declaration by the candidate

I, Bidangshri Basumatary, do hereby declare that the research work described in the thesis entitled *Biodiesel production from non-edible oil via transesterification reaction using heterogeneous catalyst derived from post-harvest plants* in partial fulfilment of the requirement for the degree of Doctor of Philosophy in Chemistry and submitted to Bodoland University, Kokrajhar, Assam, India, is a result of original research work carried out by me under the supervision of Dr. Sanjay Basumatary, Professor & Head, Department of Chemistry, Bodoland University, Kokrajhar. No portion of the thesis has been submitted to this or any other university for any other degree, diploma or certificate.

Place: Kokrajhar Date: 10|04|2024

Bidangshri Barumartany

Bidangshri Basumatary Department of Chemistry Bodoland University, Kokrajhar- 783370

ACKNOWLEDGEMENT

First and foremost, I would like to thank my supervisor, Dr. Sanjay Basumatary, Professor & Head, Department of Chemistry, Bodoland University, from the bottom of my heart for his worthy and sincere guidance throughout my research work. My studies would be incomplete without his care, teaching, suggestions, and encouragement. The excellent mentorship he provided me will always be a part of my life.

I would like to convey my deepest thanks to all my teachers in the Department of Chemistry, Deans and all faculties of Science and Technology, Bodoland University, Kokrajhar for providing me the opportunity to learn and sharing their knowledge to make me correct. I would also like to thank Dr. Pranjal Kalita, Associate Professor, Department of Chemistry, Central Institute of Technology, Kokrajhar for his advice on my research work.

I offer my humble thanks to Vice Chancellor Sir, Registrar Sir, Academic Registrar Sir, authority members, and office staff of Bodoland University, Kokrajhar, for giving me the opportunity to pursue a Ph.D. in chemistry.

My gratitude also goes to the Librarian (i/c) and office staff of the Padmashri Modaram Brahma Central Library, Bodoland University, Kokrajhar, for allowing me to collect the study materials.

I would like to acknowledge the bits of help provided by Dr. Bipul Das, Scientist, CSIR-NEIST, Jorhat, Assam, India, in XPS, HRTEM, FESEM and XRD analyses. I would also like to acknowledge the humble and kind support rendered by SAIC, Tezpur University, Assam in XRD and TGA analyses.

I am thankful to SAIF, NEHU, Shillong for TEM, FTIR and NMR analyses, Department of Chemistry, Gauhati University for FESEM, XRD and GC-MS analysis, Department of Chemistry, Central Institute of Technology, Kokrajhar, Assam for FTIR analysis.

I am highly grateful to Material Analysis and Research Centre, Bangalore for providing the facility for BET surface area, and Biotech Park, IIT, Guwahati for GC-MS analysis.

I would like to show my great thanks to the authorities of the Quality Control Laboratory, IOCL, Bongaigaon Refinery, India, for proving necessary support in testing biodiesel properties.

Special acknowledgement goes to CSIR-HRDG for the Junior Research Fellowship (09/1308(15429)/2022-EMR-I).

I am also very thankful to Dr. Biswajit Nath, who was my senior research scholar and Head of the Department of Chemistry, Science College Kokrajhar for his invaluable support and guidance.

I would especially like to thank Mr. Parmeswar Basumatary, our lab assistant in the Department of Chemistry, Bodoland University, Kokrajhar for his constant moral support and help. I would also like to express my gratitude to Dr. Anjana Dhar, Sujata Brahma, my friends and my labmates for their companionship and support.

I am extremely grateful and appreciative of the love, support and affection that my dearest father, mother, aunt and family members have shown me throughout my academic career.

Bidangshri Basumatany Bidangshri Basumatary

List of table	2 S		Pages
Table 1.1	:	Composition of various solid base catalysts derived from waste biomasses	13-17
Table 1.2	:	Comparisons of the catalysis of transesterification reaction by	22-26
		various catalysts from waste biomasses in the production of	
		biodiesel from diverse oil feedstocks	
Table 1.3	:	The fuel properties of synthesized biodiesel using agro-waste	28-30
		based heterogeneous catalysts and comparison with	
		international standard	
Table 2.1	:	Physical properties of agro-wastes derived ash-based catalysts	43-44
		utilized in biodiesel production	
Table 2.2	:	FESEM-EDX analyses of calcined <i>M. paradisiaca</i> catalyst.	50
Table 2.3	:	Elemental composition of various agro-wastes derived ash-	51-53
		based catalysts.	
Table 2.4	:	FESEM-EDX analyses of <i>M. paradisiaca</i> burnt materials.	54
Table 2.5	:	XPS analyses of <i>M. paradisiaca</i> catalysts calcined at 550 °C	56
Table 2.6	:	Elemental analysis of liquid samples of the catalysts at 1:5 w/v	59
Table 2.7	:	Catalytic activity comparison of <i>M. paradisiaca</i> catalysts in	74-76
		biodiesel synthesis with reported agro-wastes derived ash-based	
		catalysts	
Table 2.8	:	NMR spectra analyses of jatropha oil and biodiesel	82
Table 2.9	:	Composition of jatropha biodiesel	84
Table 2.10	:	Properties of jatropha biodiesel and comparison with standards	86-87
		and reported biodiesels	
Table 3.1	:	Surface area, pore volume and pore diameter of calcined <i>M</i> .	97
		champa catalyst	
Table 3.2	:	FESEM-EDX analyses of burnt <i>M. champa</i> materials	103-104
Table 3.3	:	FESEM-EDX analyses of calcined M. champa catalysts	104
Table 3.4	:	Comparison of composition of <i>M. champa</i> catalyst with other	105-109
		reported solid catalysts derived from waste biomasses	

Table 3.5	:	XPS analyses of burnt <i>M. champa</i> catalysts	114
Table 3.6	:	XPS analyses of calcined <i>M. champa</i> catalysts	114
Table 3.7	•	Comparison of <i>M. champa</i> catalysts in biodiesel synthesis with	132-134
	•	other reported waste biomass based solid catalysts	102 10 1
Table 3.8	:	NMR spectral analyses of jatropha oil and biodiesel	137
Table 3.9	•	Composition of jatropha biodiesel	139
Table 3.10		Properties of jatropha biodiesel and comparison with standards	141-142
	•	and reported biodiesels	111 112
Table 4.1	:	FESEM-EDX analysis of sugarcane bagasse calcined catalyst	153
		(SBCC)	
Table 4.2	:	XPS analysis of SBCC	155
Table 4.3	:	Rate constant (k), correlation coefficient (\mathbb{R}^2), activation energy	163
		(Ea) and pre-exponential factor (A) of various kinetic models	
Table 4.4	:	Thermodynamic parameters of the reaction	166
Table 4.5	:	NMR spectra analyses of jatropha oil and biodiesel	171
Table 4.6	:	GC-MS analysis of jatropha biodiesel	172
Table 4.7	:	Properties of jatropha biodiesel	174
Table 5.1	:	FESEM-EDX analyses of burnt Bharatmoni materials	189
Table 5.2	:	FESEM-EDX analyses of calcined Bharatmoni catalysts	189
Table 5.3	:	Elemental composition of Bharatmoni catalyst and its	190
		comparison with other reported solid catalysts derived from	
		waste biomasses	
Table 5.4	:	XPS analyses of burnt and calcined Bharatmoni catalysts	194
Table 5.5	:	Rate constant (k), correlation coefficient (R ²), activation energy	206-207
		(E _a) and pre-exponential factor (A) of various kinetic models of	
		the reaction catalyzed by CBP-550 catalyst	
Table 5.6	:	Rate constant (k), correlation coefficient (R^2), activation energy	207
		(E _a) and pre-exponential factor (A) of various kinetic models of	
		the reaction catalyzed by CBS-550 catalyst	

Table 5.7	:	Rate constant (k), correlation coefficient (R^2), activation energy	207-208
		(E_a) and pre-exponential factor (A) of various kinetic models of	
		the reaction catalyzed by CBR-550 catalyst	
Table 5.8	:	Thermodynamic properties of the reaction catalyzed by CBP-	209
		550, CBS-550 and CBR-550 catalysts	
Table 5.9	:	Catalytic activities of Bharatmoni catalysts and their	210-212
		comparison in biodiesel syntheses with other reported solid	
		catalysts derived from waste biomass	
Table 5.10	:	Chemical compositions of J. curcas biodiesel from GC-MS	216
		analysis	
Table 5.11	:	Physicochemical properties of J. curcas biodiesel and	218-219
		comparison with standards and reported biodiesel	
Table 6.1	:	Comparison of elemental compositions of solid catalysts	223-224
		derived from waste biomasses	
Table 6.2	:	XPS analysis of the prepared waste plant derived catalysts	224-226
Table 6.3	:	BET surface area, pore diameter, pore volume, type of	226
		isotherm, porous type, pH value and basicity of catalysts	
Table 6.4	:	Comparison of catalytic activity of ash-based catalysts from	227-228
		agricultural waste in biodiesel synthesis	
Table 6.5	:	Catalysts reusability in biodiesel synthesis under optimal	228
		circumstances	
Table 6.6	:	Physicochemical properties of Jatropha curcas biodiesel of this	229
		study	

List of	figures		Pages
Fig. 1.	1 :	Types of the catalysts applicable for the production of biodiesel	9
Fig. 1.2	2 :	Flow chart of different steps involved in catalysts preparation	12
		from agro-wastes	
Fig. 2.1	1 :	M. paradisiaca peel (A–C), trunk (D–F) and rhizome (G–I)	35
		used in the preparation of catalyst	
Fig. 2.2	2 :	XRD patterns of calcined M. paradisiaca catalysts	40
Fig. 2.	3 :	FT-IR spectra of calcined M. paradisiaca catalysts	41
Fig. 2.4	4 :	N ₂ adsorption-desorption isotherm (A–C) and adsorption pore	44
		size distribution (D–F) of <i>M. paradisiaca</i> peel (A, D), trunk (B,	
		E) and rhizome (C, F) catalysts	
Fig. 2.4	5 :	FESEM images (A, C, E) and EDX spectra (B, D, F) of	46
		calcined M. paradisiaca peel (A, B), trunk (C, D) and rhizome	
		(E, F) catalysts	
Fig. 2.	6:	FESEM images (A–C) and EDX spectrum (D) of 3rd recycled	47
		catalyst of <i>M. paradisiaca</i> trunk	
Fig. 2.'	7 :	FESEM images (A, C, E) and EDX spectra (B, D, F) of burnt	48
		materials of M. paradisiaca peel (A, B), trunk (C, D) and	
		rhizome (E, F) catalysts	
Fig. 2.8	8:	XPS survey spectra (A) of <i>M. paradisiaca</i> peel, trunk and	55
		rhizome catalysts calcined at 550 °C; XPS spectra of O 1s (B),	
		C 1s (C), K 2p (D), Ca 2p (E) and Si 2p (F)	
Fig. 2.9	9:	TEM images and SAED patterns (D, H, L) of M. paradisiaca	57
		peel (A–D), trunk (E–H) and rhizome (I–L) catalysts	
Fig. 2.1	10 :	pH value variation of calcined M. paradisiaca peel, trunk and	58
		rhizome catalysts (1 g) with different volume of water	
Fig. 2.	11 :	Effect of <i>M. paradisiaca</i> trunk catalyst loading on biodiesel	61
		synthesis via transesterification reaction (Temperature = $65 ^{\circ}C$,	
		MTOMR= 9:1)	
Fig. 2.	12 :	Effect of MTOMR on biodiesel synthesis (Temperature = 65	62
		°C, calcined <i>M. paradisiaca</i> trunk catalyst loading = 5 wt.%)	

Fig. 2.13	:	Effect of temperature on biodiesel synthesis. Reaction	65
Fig. 2.15	•	conditions: MTOMR = 9:1, catalyst loading (<i>M. paradisiaca</i>	05
		peel, trunk and rhizome) = $5 \text{ wt.}\%$	
Fig. 2.14	:	Effect of different alcohols on biodiesel synthesis (Temperature	67
116.2.11	•	= 65 °C, <i>M. paradisiaca</i> trunk catalyst loading = 5 wt.%)	07
Fig. 2.15	:	Reusability of <i>M. paradisiaca</i> trunk catalyst calcined at 550 °C	70
115. 2010	•	(Reaction temperature = $65 ^{\circ}$ C, MTOMR = 9:1, catalyst loading	10
		(Reaction temperature = 05° C, WTOWK = 9.1, cataryst loading = 5 wt.%)	
Fig. 2.16	:	Arrhenius plot of ln k versus $1/T$ (Reaction temperatures = 32,	71
115. 2.10	•	45, 55, 65 and 75 °C)	/ 1
Fig. 2.17	:	Catalytic activities of the <i>M. paradisiaca</i> burnt materials in	77
<u>9</u> - - /	•	biodiesel production. Reaction conditions: Temperature = 65	, ,
		°C, MTOMR = 9:1, catalyst loading (<i>M. paradisiaca</i> peel, trunk	
		and rhizome) = 5 wt.%	
Fig. 2.18	:	FT-IR spectra of jatropha oil and biodiesel	78
Fig. 2.19	:	¹ H NMR spectrum of jatropha oil	79
Fig. 2.20	:	¹ H NMR spectrum of jatropha biodiesel	80
Fig. 2.21	:	¹³ C NMR spectrum of jatropha oil	80
Fig. 2.22	:	¹³ C NMR spectrum of jatropha biodiesel	81
Fig. 2.23	:	¹ H NMR spectrum of jatropha biodiesel synthesized using	81
		ethanol (FAEE, fatty acid ethyl esters)	
Fig. 2.24	:	GC chromatogram of jatropha biodiesel	83
Fig. 3.1	:	M. champa peel (A–C), stem (D–F) and rhizome (G–I) dried	91
		materials for catalyst preparation	
Fig. 3.2	:	TGA thermograms of BMCP (A), BMCS (B) and BMCR (C)	93
		catalysts	
Fig. 3.3	:	XRD patterns of calcined M. champa catalysts	94
Fig. 3.4	:	FT-IR spectra of calcined M. champa catalysts	96
Fig. 3.5	:	N2 adsorption-desorption isotherms (A–C) and adsorption pore	98
		size distribution of CMCP-550 (D), CMCS-550 (E) and	
		CMCR-550 (F) catalysts	
Fig. 3.6	:	FESEM images (A, C, E) and EDX spectra (B, D, F) of BMCP	100
		peel (A, B), BMCS (C, D) and BMCR (E, F) catalysts	

Fig. 3.7	:	FESEM images (A, C, E) and EDX spectra (B, D, F) of CMCP-	101
		550 (A, B), CMCS-550 (C, D) and CMCR-550 (E, F) catalysts	
Fig. 3.8	:	FESEM images (A–C) and EDX spectrum (D) of 3 rd recycled	102
		catalyst of calcined <i>M. champa</i> peel (CMCP-550)	
Fig. 3.9	:	XPS survey spectra (A) of BMCP, BMCS, BMCR catalysts;	112
		XPS patterns of C 1s (B), O 1s (C), K 2p (D), Ca 2p (E) and Si	
		2p (F)	
Fig. 3.10	:	XPS survey spectra (A) of CMCP-550, CMCS-550, CMCR-	113
		550 and 3rd recycled catalysts; XPS patterns of C 1s (B), O 1s	
		(C), K 2p (D), Ca 2p (E) and Si 2p (F)	
Fig. 3.11	:	TEM images (A–C) and SAED pattern (D) of CMCP-550	116
		catalyst	
Fig. 3.12	:	TEM images (A–C) and SAED pattern (D) of CMCS-550	117
0		catalyst	
Fig. 3.13	:	•	118
11g. 5.15	•	TEM images (A–C) and SAED pattern (D) of CMCR-550	110
		catalyst	
Fig. 3.14	:	Variation of pH values of calcined <i>M. champa</i> catalysts (1 g)	119
		with different volume of water	
Fig. 3.15	:	Effect of catalyst loading of calcined M. champa peel (CMCP-	121
		550) on biodiesel synthesis (Temperature = 65 $^{\circ}$ C, MRMO=	
		9:1)	
Fig. 3.16	:	Effect of MTOMR on biodiesel synthesis (Temperature $= 65$	123
		$^{\circ}$ C, CMCP-550 catalyst = 5 wt.%)	
Fig. 3.17	:	Effect of temperatures on biodiesel synthesis. Reaction	125
		conditions (MTOMR = $9:1$, CMCP-550, CMCS-550 and	
		CMCR-550 catalysts = 5 wt.\%)	
Fig. 3.18	:	Catalytic activities of the BMCP, BMCS and BMCR catalysts	126
8		in biodiesel production. Reaction conditions (Temperature = 65	-
E' 3 10		°C, MTOMR = 9:1, catalysts = 5 wt.%)	100
Fig. 3.19	:	Reusability of calcined <i>M. champa</i> peel (CMCP-550) catalyst	128
		(Reaction temperature = $65 ^{\circ}$ C, MTOMR = 9:1, catalyst loading	
		= 5 wt.%)	

Fig. 3.20	:	Arrhenius plot (ln k versus $1/T \times 10^3$) employing <i>M. champa</i>	129
		catalysts (Reaction temperatures = 35, 45, 55, 65 and 75 $^{\circ}$ C)	
Fig. 3.21	:	FT-IR spectra of jatropha oil and its biodiesel	135
Fig. 3.22	:	¹ H NMR spectrum of jatropha oil	136
Fig. 3.23	:	¹ H NMR spectrum of jatropha biodiesel	137
Fig. 3.24	:	GC chromatogram of jatropha biodiesel	138
Fig. 4.1	:	XRD pattern of sugarcane bagasse calcined catalyst (SBCC)	148
Fig. 4.2	:	FT-IR spectrum of SBCC	149
Fig. 4.3	:	Adsorption-desorption (N ₂) isotherm of SBCC	150
Fig. 4.4	:	Pore size distribution of SBCC	150
Fig. 4.5	:	FESEM (A–C) and EDX (D) images of SBCC	151
Fig. 4.6	:	HRTEM images (A–E) and SAED pattern (F) of SBCC	152
Fig. 4.7	:	XPS spectra of SBCC (A-Survey plot, B-O 1s, C-C 1s, D-K	154
		2p, E–Ca 2p, and F–Si 2p)	
Fig. 4.8	:	pH value of 1 g SBCC dissolved in different volumes of	156
		distilled water (w/v)	
Fig. 4.9	:	Effect of SBCC loading on production of biodiesel	157
		(Temperature = 65 °C, MTOMR = 9:1)	
Fig. 4.10	:	Effect of MTOMR on production of biodiesel (Temperature =	158
		65 °C, catalyst dose = 10 wt.%)	
Fig. 4.11	:	Effect of temperature on production of biodiesel (MTOMR =	160
		9:1, catalyst dose = 10 wt.\%)	
Fig. 4.12	:	Reusability of SBCC on production of biodiesel (Temperature	161
		= 65 °C, MTOMR = 9:1, catalyst dose = 10 wt.\%)	
Fig. 4.13	:	Arrhenius plot (ln k versus 1/T) for zero order reaction	163
Fig. 4.14	:	Arrhenius plot (ln k versus 1/T) for first order reaction	164
Fig. 4.15	:	Arrhenius plot (ln k versus 1/T) for pseudo-first order reaction	164
Fig. 4.16	:	Arrhenius plot (ln k versus 1/T) for second order reaction	165
Fig. 4.17	:	Eyring-Polanyi plot (ln k/T versus 1/T)	166
Fig. 4.18	:	¹ H NMR spectra of (A) jatropha seed oil and (B) biodiesel	170
Fig. 4.19	:	Gas chromatogram of jatropha biodiesel	172

Fig. 5.1	:	Pictorial representation of raw materials of Bharatmoni banana	178
		peel (A-C), stem (D-F) and rhizome (G-I) for catalyst	
		preparation	
Fig. 5.2	:	XRD patterns of calcined Bharatmoni catalysts	181
Fig. 5.3	:	FT-IR spectra of calcined Bharatmoni catalysts	182
Fig. 5.4	:	N ₂ adsorption-desorption isotherms (A–C) and adsorption pore	183
		size distribution of CBP-550 (D), CBS-550 (E) and CBR-550	
		(F) catalysts	
Fig. 5.5	:	FESEM images (A, C, E) and EDX spectra (B, D, F) of BBP	184
		(A, B), BBS (C, D) and BBR (E, F) catalysts	
Fig. 5.6	:	FESEM images (A, C, E) and EDX spectra (B, D, F) of CBP-	185
		550 (A, B), CBS-550 (C, D) and CBR-550 (E, F) catalysts	
Fig. 5.7	:	FESEM images (A–C) and EDX spectrum (D) of 3 rd recycled	186
		catalyst of CBS-550	
Fig. 5.8	:	TEM images of CBP-550 (A, B), CBS-550 (C, D) and CBR-	187
		550 (E, F)	
		catalysts	
Fig. 5.9	:	XPS survey spectra (A) of BBP, BBS, BBR catalysts; XPS	192
		patterns of C 1s (B), O 1s (C), K 2p (D), Ca 2p (E) and Si 2p	
		(F)	
Fig. 5.10	:	XPS survey spectra (A) of CBP-550, CBS-550, CBR-550 and	193
		3 rd recycled catalysts; XPS patterns of C 1s (B), O 1s (C), K 2p	
		(D), Ca 2p (E) and Si 2p (F)	
Fig. 5.11	:	Variation of pH values of calcined Bharatmoni catalysts (1 g)	195
		dissolved with different volume of water	
Fig. 5.12	:	Effect of catalyst loading of calcined Bharatmoni stem (CBS-	197
		550) on biodiesel synthesis (Temperature = 65 °C, MTOMR=	
		9:1)	
Fig. 5.13	:	Effect of MTOMR on biodiesel synthesis (Temperature = 65	198
		°C, CBS-550 catalyst = 5 wt. %)	
Fig. 5.14	:	Effect of temperature on biodiesel synthesis. Reaction	200
		conditions: MTOMR	

		= 9:1, catalyst loading (CBP-550, CBS-550, CBR-550) = 5 wt.	
		%	
Fig. 5.15	:	Catalytic activities of the uncalcined Bharatmoni catalysts in	201
		biodiesel production. Reaction conditions: Temperature = 65	
		^o C, MTOMR = 9:1, catalyst loading (BBP, BBS, BBR) = 5 wt.	
		%	
Fig. 5.16	:	Reusability of CBS-550 catalyst (Reaction temperature = 65 °C,	202
		MTOMR = 9:1, catalyst loading = 5 wt.%)	
Fig. 5.17	:	Arrhenius plot (ln k versus $1/T \times 10^3$) for the reaction of zero-	204
		order rate model employing Bharatmoni catalysts (Reaction	
		temperatures = 35, 45, 55, 65 and 75 °C)	
Fig. 5.18	:	Arrhenius plot (ln k versus $1/T \times 10^3$) for the reaction of pseudo-	205
		first order rate model employing Bharatmoni catalysts	
		(Reaction temperatures = 35, 45, 55, 65 and 75 $^{\circ}$ C)	
Fig. 5.19	:	Arrhenius plot (ln k versus $1/T \times 10^3$) for the reaction of first	205
		order rate model employing Bharatmoni catalysts (Reaction	
		temperatures = 35, 45, 55, 65 and 75 °C)	
Fig. 5.20	:	Arrhenius plot (ln k versus $1/T \times 10^3$) for the reaction of second	206
		order rate model employing Bharatmoni catalysts (Reaction	
		temperatures = 35, 45, 55, 65 and 75 °C)	
Fig. 5.21	:	Eyring-Polanyi plot (ln k/T versus $1/T \times 10^3$) for the study of	209
		thermodynamic properties of the reaction employing the	
		Bharatmoni catalysts	
Fig. 5.22	:	FT-IR spectra of J. curcas oil and its biodiesel	214
Fig. 5.23	:	¹ H NMR spectrum of <i>J. curcas</i> biodiesel	215
Fig. 5.24	:	GC-MS of J. curcas biodiesel	216

Abbreviations

WCO	Waste cooking oil
MTOMR	Methanol to oil molar ratio
MBCUS	Musa balbisiana Colla underground stem
ORCs	Optimum reaction conditions
JCO	Jatropha curcas oil
HT	High pressure-high temperature
Viz.	Namely
S	Second
nm	Nanometre
Μ	Molarity
Ν	Normality
Mmol	Millimole
mol/L	Moles per litre
Mm	Millimetre
mL	Millilitre
min	Minute
mg	Milligram
mmol g ⁻¹	Milimole per gram
$m^2 g^{-1}$	Square mitre per gram
$\mathrm{cm}^3\mathrm{g}^{-1}$	Cubic centimetre per gram
L	Litre
mg/L	Milligram per litre
Kg	Kilogram
Kcal	Kilocalorie
JCPDS	Joint committee on powder diffraction standards
H_	Hammett strength
g	Gram
h	Hour
FAME	Fatty acid methyl ester
EN	European norms
ASTM	American society for testing and materials

SN	Saponification number
HHV	Higher heating value
wt. %	Weight percentage
TOF	Turnover frequency
AV	Acid value
BET	Brunauer-Emmett-Teller
BJH	Barrett-Joyner-Halenda
EDX	Energy dispersive X-ray
FESEM	Field emission scanning electron microscope
FFA	Free fatty acid
FT-IR	Fourier transform infrared spectrometer
GC-MS	Gas chromatography-mass spectrometry
HRTEM	High resolution transmission electron microscope
IV	Iodine value
MRMO	Molar ratio of methanol to oil
NMR	Nuclear magnetic resonance
ORCs	Optimum reaction conditions
SAED	Selected area electron diffraction
SN	Saponification number
TGA	Thermogravimetric analysis
TLC	Thin layer chromatography
TOF	Turnover frequency
XPS	X-ray photoelectron spectrometer
XRD	X-ray diffractometer
CFPP	Cold filter plugging point
BMCP	Burnt Musa champa peel catalyst
BMCR	Burnt Musa champa rhizome catalyst
BMCS	Burnt Musa champa stem catalyst
CMCP-550	Calcined Musa champa peel catalyst at 550 °C
CMCR-550	Calcined Musa champa rhizome catalyst at 550 °C
CMCS-550	Calcined Musa champa stem catalyst at 550 °C
SBCC	Sugarcane bagasse calcined catalyst
BBP	Burnt Bharatmoni peel
BBS	Burnt Bharatmoni stem

BBR	Burnt Bharatmoni rhizome
CBP-550	Calcined Bharatmoni peel at 550 °C
CBS-550	Calcined Bharatmoni stem at 550 °C
CBR-550	Calcined Bharatmoni rhizome at 550 °C
XRD	X-ray diffractometer
EDX	Energy dispersive X-ray
FESEM	Field emission scanning electron microscope
FT-IR	Fourier transform infrared spectrometer
GC-MS	Gas chromatography-mass spectrometry
HRTEM	High resolution transmission electron microscope
NMR	Nuclear magnetic resonance
SAED	Selected area electron diffraction