Chapter 4

Five Dimensional Exact Bianchi Type-I
Cosmological Models within the

Framework of Saez-Ballester Theory

4.1 Introduction

The universe is spherically symmetric in its current state of evolution and its matter
distribution is mostly isotropic and homogeneous. However, it could not have had such
a smoothed out picture in its early phases of evolution because the types of matter fields
in the early universe are uncertain. Furthermore, no observable evidence exist that
guarantee in an epoch prior to recombination. As a result, anisotropy is a very natural
phenomenon to explore in order to solve difficulties like the local anisotropies that we
see today in galaxies, clusters and superclusters. These anisotropies could be caused by
a variety of factors, including cosmological magnetic or electric fields, long-wavelength
gravitational waves and Yang-Mills fields (Barrow, 1997).

Because they are isotropic and homogenous, Friedmann-Robertson-Walker (FRW)
models best approximate the current universe’s large scale structure. However, mod-
els with anisotropic backgrounds are adequate for describing the early stages of the
universe’s evolution. One of the most basic models of the universe with anisotropic
background that represents a spatially homogenous and flat universe is the Bianchi

type-I model, which is a straightforward generalisation of the flat FRW model. The

52



53

Bianchi type-I universe has the unusual trait of behaving like a Kasner universe near the
singularity even in the presence of matter and so falls under Belinskii et al. (Belinskii
et al., 1970)’s general analysis of the singularity. It has also been proved that in a
world packed with matter with p = vp, v < 1, any initial singularity in a Bianchi
type-I universe quickly dies away and a Bianchi type-I universe evolves into a FRW
universe (Marciano, 1968). This property of the Bianchi type-I universe makes it an
excellent option for investigating the effects of anisotropy in the early universe on
modern data. Anisotropic Bianchi type-I1 models have been studied by a number of
authors (Kumar and Singh, 2007; Pradhan and Chouhan, 2011; Singh and et al., 2020)

in various circumstances.

4.2 The metric and field equations
We consider the metric for this problem as given below
ds® = —dt> + A" (da? + dy?) + Bdz* + C" dy? 4.1

where A, B and C are arbitrary function of cosmic time.

The scalar-tensor field equations in the Sdez-Ballester theory are given by

1 m 1
Ri; — §gin —we™ (¢, — §.Gij¢,k¢’k) = —1;; (4.2)
where the scalar field ¢ satisfies the equation
200 +me™ ' P rd™ = 0 4.3)

Here Tj; is stress energy tensor of matter, comma and Semicolon represents partial

and covariant differentiation respectively.

Also we have

T7 =0 4.4)

which is a consequence of the field equation (4.2) and (4.3).
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We consider the energy momentum tensor 7;; for perfect fluid in the following form

Ti; = (p + p)usu; — pgij 4.5)

where p, p denotes the energy density and pressure of the fluid. Also ' is the five-
velocity vector satisfying u‘u; = 1.

For this chapter we define the spatial volume V, expansion scalar #, Hubble’s
parameter H, the deceleration parameter g, the shear scalar 0% and the main isotropy

parameter /A for the metric (4.1) are as follows

V =a*= A’BC (4.6)
9:ufi:2é+g+g (4.7)

- _% (4.9)

ot = Lot = 227 + g + %) - %2 (4.10)
A= izg‘zl(Hi—HH)? 4.11)

where an overhead dot represents differentiation with respect to cosmic time ¢.

For a co-moving coordinate system, the field equation (4.2), (4.3) for the metric

(4.1) with the help of equation (4.5) can be written as follows

i B ¢ AB A¢ BC n

Atstetaptac e T Ty @12
A A ¢ _Ac P
QZ—I—F‘FE—FQZ@——]?—FOJQb? (4.13)

i B A _AB "
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P AB _AC _BC #

2 At e Tee 7y 13
. A B O md
@+¢(22+§+6)+5%:O (4.16)
| i B ¢
P+(ﬁ+p)(2z+§ 5):0 (4.17)

The field equations (4.12-4.16) are a set of five equations with six unknown variables:
A, B, C, p, p and ¢. So, in order to achieve complete determinacy of the system, we
need one more relation among the variables, which we will acquire in the following
section by solving the field equations using a particular rule of variation for Hubble’s

parameter provided by the authors (Kumar and Singh, 2007).

4.3 Solution of the field equations

The field equations (4.12-4.16) are a system of connected very non-linear equations.
We often assume a form for the matter content or that the space-time supports killer
vector symmetries in order to solve the field equations. The field equations can also be
solved using a rule of variation for Hubble’s parameter, which was first proposed in
FRW models by Berman (Berman, 1983a) and yields a constant value of deceleration
parameter. In anisotropic Bianchi type-I space-time, the authors (Kumar and Singh,
2007) developed a similar law of variation for Hubble’s parameter, which also provides
a constant value of deceleration parameter. The observed fluctuations do not contradict

the assumed fluctuation for Hubble’s parameter.

The FRW metric has been applied to the most well-known versions of Einstein’s
theory and Brans-Dicke theory. Several authors have studied cosmological models with
constant deceleration parameter in the literature (Bishi and et al., 2017; Kumar and
Singh, 2007; Singh and Kumar, 2006). In scalar-tensor and scale covariant theories
of gravity, Reddy et al. (Reddy et al., 2007, 2006b) proposed LRS Bianchi type-I

models with constant deceleration parameter. The authors of this work looked into
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LRS Bianchi type-II models in general relativity with constant deceleration parameter,

Guth’s inflationary theory, and self-creation theory of gravitation (Singh and Kumar,

2006, 2007a,b).

Using a specific law of variation for Hubble’s parameter that provides a constant value of

deceleration parameter, the authors (Kumar and Singh, 2007) have found a class of exact

solutions for a spatially homogenous and in general relativity, as well as anisotropic

Bianchi type-I space-time with perfect fluid.

The variation law of Hubble’s parameter is

H=La"=L(A’BC) =

here L > 0 and n > 0 are constants

The deceleration parameter ¢ is given by

ad
1=
From equation (4.8) and (4.18), we have
e
a

Integrating euation (4.20), we get
a= (nLt+ k’l)% for n#0
and

a=keel* for n=0

ky and k5 are constants of integration.

Using (4.21) into (4.19) we get,

g=n-—1

(4.18)

(4.19)

(4.20)

4.21)

(4.22)

(4.23)

This demonstrates that the law (4.18) leads to a constant value of deceleration parameter.

We may get the following three relations by subtracting (4.12) from (4.13), (4.12) from



(4.14), and (4.13) from (4.14) and taking the second integral of each

A? _
E _ lle(cl Ja 4dt)

A? 4
? _ 126(02fa dt)

E — lg€(c3fa_4dt)

l1,15,13, c1, co and c3 are integration constants..

The metric functions from (4.24-4.26) can be defined as

2 4
A =qasgehfad

4 —4
B = qigge® /ot

C = asxgeds o

Here,

x1 = /i1, LUQZW and I3:W
and

dy =9t g,—s-a and gy = —lete)

where these constants fulfil the following two relationships

12223 =0 and d;i+dy+d; =0

(4.16)’s second integral gives us

b= [h(m;- 2) /a_A‘dt]mi?

4.3.1 Case(I): for n # 0,
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(4.24)

(4.25)

(4.26)

4.27)

(4.28)

(4.29)

(4.30)

(4.31)

The following scale factor expressions are obtained by using (4.21) in (4.27-4.29)
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n—4
di(nLt+ky) 7™

re Lmh (4.32)

w‘w

A= xl(nLt + kl)

n—4
do(nLt+ky) n

B =zy(nLt + k,)sne  Lomn (4.33)

n—4
dg(nLt+ky) n_

C =as(nlt + ky)ane LoD (4.34)

The scalar field is given by using (4.21) in (4.31)

h(m + 2 ne
%Ww (Lt + ] 709 (4.35)

The pressure and energy density of the model are as follows when (4.32)-(4.35) are

substituted in (4.14) and (4.15)

¢ =

2 2
8

L
p= 3(24n —44)(nLt + k1) ? — (3d] + d5 + 2dydy — %)(nlzt + ki) n+4

4
gLdi(nLt + k)T (4.36)

h? 52

ALdy(nLt + ki)™= % (4.37)

Using (4.30), the solutions (4.32-4.37) fulfil the energy conservation equation (4.17)
in the same way and hence represents exact solutions of Einstein’s field equations
(4.12-4.16). Furthermore, if we assume x, = x3 and dy = d3, i.e. B = (), the above
solutions reduce to the Reddy et al. (Reddy et al., 2006b) solutions. As a result, the
model presented above generalises the model explored by Reddy et al. (Reddy et al.,
2006Db).

The Hubble’s parameter is given by

d
H= Zl(m 4 ky) w4 L(nLt + ki)™t (4.38)



The expansion scalar is define by

d
0 = %(nu k) 4 3L(nLt + ki)

The anisotropy parameter A is calculated as follows

1.dy

A =[5 (nLt + k)% + L(nLt + k)Y 2
5 dydy  dyd
[(Zd% +d24d2— % - %)(nLt + k)

4 2L
+ G DALt + k) 2 o =2 (dy + s — 2dh) (n Lt + k)]

volume is given by

3

V= (nLt+ k)
and the shear scalar is
Lt + k)~n 247 79
o2 = %(@cﬁ +d3+d3) + §L2(nLt + k)72

9 14
— 1—6d1L(’7LLt + kl) ! ;ll

4.3.2 Case(II): for n = 0,

The model’s scale factors are as follows when using (4.22) in (4.27-4.29)

2 (2Lt dy e—4Lt)
A=mkje ® %

4 (4Lt d3 e—4Lt)

2 (-2
C =uxzkje ° 1k

The scalar field ¢ is defined as follows
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(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)
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The pressure and energy density are calculated as follows

4 44 h?
p=gdile 'yt = L~ kySe M3} 4 & + 2y — “’T) (4.47)
2

} 2
eSS (@2 4 2d1dy + 2dyds + dad, + C%) (4.48)

The results (4.43-4.48) satisfy (4.17) in the same way, indicating that they are exact

solutions to the field equations (4.12-4.16).

The Hubble’s parameter, expansion scalar, anisotropy parameter, volume and the

shear scalar are given by in the following way

1
H= Z[dle“‘“k;“ + 41 (4.49)

0 = [dye *FEt 4 4L (4.50)

11 didy  dyds

Lt o5 st
A = [ (e Pkt AL (G + d o+ — =2 = =2 )e g
A2 2L
+ =g+ 5 (ds +dy = 2d0)e” Mhy Y @45)
V = ket (4.52)
8Lt 7 212
o? =" 5k S+ ds + &) + == — Ldve " hy (4.53)

Here, we plot in all the graphs by taking L = dy = dy =d3 =h =m = ks = 1 and
w="500,n =5,k =0.
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4.4 Physical and geometrical interpretation

For case(I):

At t = ty, where tg = —ky/nL, the expansion scalar is infinite and the spatial
volume is zero, indicating that the universe begins to evolve with zero volume at ¢t = ¢,
and an unlimited rate of expansion. At t = t,, the scale factors vanishes as well,
therefore the model has a point singularity at the beginning. At the initial singularity,
the pressure, energy density, Hubble’s parameters and shear scalar diverges. At the
initial epoch, the scalar field and anisotropy parameter also tends to infinity, assuming
n < 4. After the big bang, the universe expands in a power-law pattern. The scale
factors and the spatial volume rises as ¢ increases, but the expansion scalar decreases.
As a result, when time passes, the pace of expansion slows. As ¢ increases ¢, p, p, H, A
and o all decreases. Scale factors and volume grows indefinitely as ¢ — oo, whereas
&, p, p, H, A, and o2 tends to zero [shown in fig-4.1, fig-4.2, fig-4.3, fig-4.4, fig-4.5,
fig-4.6, fig-4.7, fig-4.8]. As a result, for large time ¢, the model would basically produce
an empty universe. As ¢t — 0o, the ratio § approaches to zero, assuming n < 4. For
large values of ¢, the model approaches isotropy. Hence, the model denotes a shearing,
non-rotating and expanding universe with a big bang start that approaches isotropy at
late periods.

The integral

[ V()dt = T l(n Lt + k)]
is finite if n # 1. Therefore, this model has a horizon. Also it is defined that the
above solutions aren’t applicable when n = 4. The spatial volume grows linearly with
cosmic time for n = 4. For n > 1, ¢ > 0; thus, the model describes a universe that
is decelerating. We get, —1 < ¢ < 0 when n < 1, which means that the universe is
accelerating. The observations of type la supernovae (John, 2004; Knop and et al., 2003;
Perlmutter and et al., 1997, 1998, 1999; Reiss and et al., 1998, 2004; Tonry and et al.,

2003) further show that the universe is accelerating and that the value of deceleration
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parameter is somewhere between —1 < ¢ < 0. As a result, the solutions produced in
this model are compatible with the observations.
For case(Il):

In this case the model has no initial singularity. At time ¢ = 0, the spatial volume,
scale factors, scalar field, pressure, energy density and other cosmic characteristics are
all constant. As a result, the universe begins to evolve at a constant volume and expands
at an exponential rate. The scale factors and spatial volume increases exponentially as
time 7 increases, whereas the scalar field, pressure, energy density, anisotropy parameter
and shear scalar decreases. Here, the expansion scalar remains constant throughout the
evolution of the universe, implying that the universe expands uniformly exponentially in
this scenario. The scale factors and volume of the universe increases indefinitely large
as t — oo, whereas the scalar field, anisotropy parameter and shear scalar tend to zero.
The pressure, energy density and Hubble’s factors become constants such that p = —p
[shown in fig-4.9, fig-4.10, fig-4.11, fig-4.12, fig-4.13, fig-4.14, fig-4.15, fig-4.16]. This
shows that the universe is dominated by vacuum energy at late times, which causes the
universe’s expansion. For large time ¢, the model approaches isotropy. As a result, the
model represents a shearing, non-rotating, expanding universe with a finite start that
eventually approaches isotropy when time passes.

Here we obtained that lim,_,, /z appears to be a constant. Hence, the model ap-
proaches homogeneity and matter at the origin is dynamically negligible; this agrees
with Collins (Collins, 1977). The observations of type Ia supernovae (John, 2004; Knop
and et al., 2003; Perlmutter and et al., 1997, 1998, 1999; Reiss and et al., 1998, 2004;
Tonry and et al., 2003) show that the universe’s current state of evolution is accelerating.
It is believed that because the universe is currently accelerating, it will continue to
expand at the fastest possible rate in the future and forever. For n = 0, we get ¢ = —1;
by coincidence, this value of deceleration parameter leads to % = 0, implying the
largest value of Hubble’s parameter and the universe’s fastest rate of expansion. As
a result, the solutions presented in this model are consistent with observations and
may have applications in the analysis of late-time evolution of the actual universe in

Saez-Ballester’s theory of gravitation.



