
Chapter 1

Introduction

1.1 General Relativity

General Relativity (GR), first proposed by Albert Einstein in 1915 is considered as the

foundational theory in modern astrophysics. Three general principles guided Einstein; the

principle of covariance, the principle of equivalence, and Mach’s principle in developing

the general theory of relativity. Also, Einstein’s theory of gravity generalizes special rel-

ativity. Redefining Newton’s law presented the unification of gravitation geometrically in

four-dimensional space-time. The curvature of the space-time geometry is mainly related

to the universe’s energy and momentum of matter and radiation. Beyond Newton’s law of

universal gravitation in general relativity, which best describes classical gravity, there are

specific predictions over time. The geometry of space, the motion of bodies in free fall,

light propagation, gravitational lensing, the redshift of light, gravitational time dilation,

singularity, and black holes. The foundation of cosmology and its evolution is depicted by

the time-dependent solution of the general theory of relativity, which led to the discovery

of the big bang and CMBR. Einstein, publishing the special theory of relativity in 1905,

focused on the inclusion of gravity with his new relativistic framework. After numerous

attempts, Einstein in 1915 presented his new theory at the Prussian Academy of Science,

known as Einstein’s theory of general relativity. Einstein noticed the fundamental rela-
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tion between gravitation and space-time. Einstein, in his theory, described the space-time

curvature with the energy-momentum tensor within that space-time for any matter. Ein-

stein’s theory described space-time in a Pseudo Riemannian metric as

ds2 = gi jdxidx j (1.1)

where i, j = 1,2,3 and 4 and the symmetric tensor constituents gi j serve as gravitational

potential.

The equation below defines Einstein’s field equation in general relativity led by the grav-

itational field:

Ri j −
1
2

gi jR+Λgi j =−8πTi j (1.2)

where Ri j is the Ricci tensor, R is the Ricci scalar, and Ti j is the energy-momentum tensor

by the matter, and Λ is the cosmological constant. Due to the non-divergence of the

Einstein tensor Gi j =Ri j− 1
2gi jR the field equation conserve the energy-momentum. Thus

leading

T i j
; j = 0 (1.3)

which is termed as the energy-momentum conservation equation, formulating the equa-

tions of motion of matter.

The three general principles that guided Einstein are:

Principle of Covariance: The principle of covariance highlights the use of only those

physical quantities in improving physical laws, measurements of which might be made

by observers with diverse points of view and still have evidence. Thus the mathematical

representation of the set of coordinate transformations must be represented covariantly,

irrespective of the space-time coordinate system.

Principle of Equivalence: The equivalence principle generalizes the well-known fact

that observers falling freely are not affected by gravitation because gravitational and iner-

tial mass are equivalent. According to the Equivalence Principle, at any spacetime point

in an arbitrary gravitational field there is a “locally inertial” coordinate system in which

2



the effects of gravitation are absent in a sufficiently small spacetime neighborhood of that

point.

Mach’s Principle: The Mach Principle asserts that the distribution of matter in the cos-

mos determines a body’s inertial properties. Because the gravitational field interacts with

all matter, it could express the Mach principle relationship between inertial and remote

value in terms of the gravitational field. The ratio of a body’s inertial mass to its active

gravitational mass is regarded to express this in a unitless manner.

1.2 Cosmological Constant

Einstein in 1917 added the cosmological constant to his field equation to establish a static

cosmic solution. He altered his field equation to bring a static universe by containing

repulsive components which balance the usual gravitational attraction. Einstein observ-

ing his field equation, discovered that an additional term can naturally accommodate the

geometry side of his field equation. With this alteration, he added a coefficient Λ termed

the cosmological constant. This cosmological constant is simply narrated as energy den-

sity or vacuum energy. Later Einstein stated this term as his biggest blunder soon after

Hubble’s observation in 1929, which indicated the universe was not static but expanding.

After that, Einstein ditched the concept of Λ in 1931. Since the discovery of the acceler-

ating universe until the late 1990s, the value of the cosmological constant has a positive

non-zero value [Perlmutter et al.(1998),Perlmutter et al.(1999),Riess et al.(1998),Schmidt

et al.(1998),Weinberg(2015)]. The estimated value of Λ is minimal, decreasing with cos-

mic expansion, which states that the universe’s age is old. It is also associated with the

term so-called dark energy, which is the present candidate for the universe’s evolution.

However, many scientists continue to be interested in theorizing about and conducting

empirical studies on the cosmological constant.
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1.3 Cosmology and Cosmological Model

Cosmology is a branch of astronomy that investigates the universe’s evolution from its

beginning to the near future, considering the big bang and the initial formation of the uni-

verse. The Greek term “kosmos” is where the word “cosmology” originated, which means

the study of the universe. Scientifically, this study of the universe’s large-scale structure

is termed cosmology. The elements that make up the universe’s large-scale structure

are many stars, a group of stars called galaxies, clusters of galaxies called superclusters,

voids, and many mysterious characters still invisible to human knowledge. Cosmology

includes general relativity, theoretical cosmology, observational astrophysics, quantum

mechanics, particle physics, and plasma physics.

As dealing mainly with observational facts, Physical cosmology is a sub-branch of as-

tronomy that portrays the universe’s immense figure and dynamics. The Big-Bang theory

governs modern cosmology to determine observational astronomy and particle physics

together to understand the universe’s evolution. More precisely, the ΛCDM model is the

current standard model of cosmology that is parameterized both with DE and DM.

The fundamental queries about the universe’s evolution and the production of large-scale

structures are addressed by a mathematical description of the universe, which is a cosmo-

logical model of the observed cosmos. The cosmological principle represents the geome-

try of homogeneous and isotropic space-time expressing the Robertson-Walker metric.

ds2 = dt2 −a2(t)
[

dr2

1− kr2 + r2dθ
2 + r2sin2

θdφ
2
]

(1.4)

Here a(t) is considered the cosmological scaling factor. The parameter k holds the values

+1,−1,0, according to which it can define the description of the universe. According to

cosmological study, the universe with the value k =+1 positively curved space is a closed

universe, k =−1 negatively curved space is an open universe, k = 0 is a flat universe. In

addition, Friedmann [Friedmann(1922)] also defined the evolution of the scale factor a(t)

using Einstein’s field equation for all three curvatures. As in large-scale observations, the
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universe is spatially homogeneous and isotropic, which is well demonstrated by the FRW

model. Although the FRW model best defines the homogeneity and isotropy of the uni-

verse. The recent CMBR evidence shows the anisotropic behaviour and small magnetic

field. Thus, a significant deviation from the FRW hypothesis occurred in the early phase

of cosmic evolution. Thus, understanding the anisotropic cosmological model is benefi-

cial to understanding the isotropic cosmological model. To bridge the gap between the

FRW model and the inhomogeneous and anisotropic cosmos, Bianchi models are crucial

in modern cosmology that is homogeneous and anisotropic .

1.4 Bianchi Space-time

The Bianchi-type cosmological model plays an essential role in modern cosmology. Bianchi-

type cosmological models are homogeneous and anisotropic, studying the universe’s isotropy

as time passes. The anisotropic universe is theoretically more general than the isotropic

universe. Bianchi space-time is crucial when building spatially homogenous and anisotropic

models using the basic field equations and their solutions.

Bianchi [Bianchi(1898)] classified the relevant three-dimensional space-time. Bianchi is

structured as the nine sets of structural constants for the three-parameter automorphism

group, algebraically used to define space-time uniformly. Therefore, a three-parameter

group of movements with a limited number of degrees of freedom is admissible in Bianchi

space-time. To the present day, there has been a significant amount of work executed on

the anisotropic universe. The simplest Bianchi models of nine types are spatially homoge-

neous [Taub(1951)] and have been investigated by many. Bianchi type-I, V, V II0 and V IIh

models tend towards isotropy at an arbitrarily large time, attributing to the formation of

galaxies [Collins & Hawking(1973)]. The Bianchi models that represent the generalized

flat FRW model are type-I and V II0, and types-V and V IIh represent the generalized open

FRW models. And the generalized non-flat models are the types II, VI, VIII, and IX.
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For this research, the particular Bianchi type-III, V I0, and IX have been used to determine

the cosmological models of the universe. The relativistic Bianchi type-III, V I0 and IX

cosmological models, which are anisotropic and homogeneous in space-time, are as fol-

lows:

Bianchi type-III metric is expressed as

ds2 =−dt2 +A2dx2 +B2e−2mxdy2 +C2dz2

where the metric potentials (directional scale factors) A,B,C act as a function of cosmic

time and m as a constant.

Bianchi type-V I0 metric is defined by

ds2 =−dt2 +A2dx2 +B2e−2mxdy2 +C2e2mxdz2

here also, m acts as a constant, and A,B,C as a function of cosmic time.

Bianchi type-IX metric is given by

ds2 =−dt2 +A2dx2 +B2dy2 +(B2sin2y+A2cos2y)dz2 −2A2cosy dx dz

where A and B are characterized as a function of time t.

1.5 Energy-Momentum Tensors

The stress-energy tensor, often known as the energy-momentum tensor, is an extension

of Newtonian physics’ stress tensor. It is a physical tensor quantity that characterises the

density and flux of energy and momentum in space-time attributed to matter, radiation,

and the field of non-gravitational force. In Einstein’s field equation of general relativity,

the gravitational field is made up of this density and flow of energy and momentum.

1.5.1 Perfect Fluid

The frictionless, homogeneous, and incompressible fluid where the normal force acts be-

tween the neighbouring fluid layers cannot support any tangential stress or shear action.
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The pressure of the fluid in every location is equal in all directions, whether in rest or

motion. In general relativity, perfect fluids simulate idealized matter distributions, such

as the inside of a star or an isotropic cosmos. The EoS for the ideal fluid can be utilized

to represent the evolution of the cosmos in Friedmann-Lemaı̂tre-Robertson-Walker equa-

tions.

The formulation for a perfect fluid’s stress-energy tensor in general relativity can be writ-

ten as

Ti j =

(
ρ +

p
c2

)
uiu j + pgi j (1.5)

where ρ is the fluid’s energy density, u its four-velocity vector, and p its pressure.

1.5.2 Viscous fluid

Viscosity is the resistance between the fluid’s layers to the fluid’s movement. The fluids

with higher viscosity are known as viscous fluids. The viscous fluid’s energy-momentum

tensor is given as

Ti j = ρuiu j +

(
p
c2 −ξ θ

)
Hi j −2ησi j (1.6)

Here, ui is the four-velocity vector, p is the isotropic pressure, ρ is the fluid density, and

η , ξ are coefficients of bulk viscosity and shear viscosity, respectively.

where Hi j = gi j −uiu j denotes projection tensor and σi j denotes shear tensor given by

σi j =
1
2

(
ui
,µHµ j +ui

,µH iµ
)
− 1

3
ΘHi j (1.7)

1.5.3 Electromagnetic field

The physical field that is produced by an electrically charged object is known as an elec-

tromagnetic field. The electromagnetic field is generated by the charge on matter parti-

cles in space. The electromagnetic field created by the passage of charge in space has an
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energy-momentum tensor with proper density ρ with a four-dimensional velocity ui and

current density vector ji is given as

Ti j =−FiαFα j +
1
4

gi jFαβ Fαβ (1.8)

where the electromagnetic field F obeys the Maxwell equation:

F i j
; j =

4π

c
ji (1.9)

F[i j,k] = 0 (1.10)

1.6 Lyra’s Geometry

Einstein added the cosmological constant term Λ into the field equations to geometrize

gravity using general relativity. But later, after discovering the large-scale recession of

galaxies or expansion of the universe by Hubble, Einstein called the term his most sig-

nificant blunder in his life. Even though Einstein’s theory was used to describe cosmo-

logical models of the cosmos, it falls back on other forces defined in classical physics,

such as electromagnetic forces, which is also a geometric phenomenon in cosmology.

Weyl [Weyl(1918)] proposed a unified theory with the geometrizing theory of gravitation

with electromagnetism. But due to the lack of non-integrability of the length transfer, it

did not take the approach. Later on, Lyra [Lyra(1951)] modified the Riemannian geom-

etry by removing the non-integrability requirement and adding the gauge function to the

structureless manifold in Wely’s unified theory resulting in the formation of the displace-

ment vector.

Lyra’s geometry is considered the extension of Einstein’s theory of gravitation. Lyra

[Lyra(1951)] modified Riemannian geometry by defining the displacement vector PQ

between two neighbouring point P(xi) and Q(xi + dxi) involving the components ζ =

x0(xi)dxi, where x0(xi) is non-zero gauge function. Lyra included both gauge function
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x0(xi) and reference system xi. Thus Lyra’s geometry under the transformation of the

co-ordinate under metric tensor is given as

ds2 = gi jx0dxix0dx j (1.11)

which is invariant under both the co-ordinate and gauge transformation and with gi j as

the fundamental tensor of rank two.

In contrast to Riemannian geometry, the components of the affine connection are no

longer symmetric in the lower indices and cannot be recognized by the Christoffel sym-

bols. As in Lyra geometry, the functions of Christoffel symbols and the functions of φi

are the components of the affine connection. The Lyra curvature tensor R̄h
i j, the contracted

curvature tensor Ri j and the scalar curvature can be defined in the same way as defined in

the Riemannian geometry.

The scalar curvature R̄ is defined as

R̄ = R(x0)−2 +3(x0)−1
φ

i
;i +

3
2

φ
i
φi (1.12)

Here R is the Riemannian curvature scalar. Also, φi is defined as

φi = (x0)−1 ∂

∂xi{log(x0)2} (1.13)

The invariant volume integral in Lyra’s geometry by considering the normal gauge x0 = 1

and is given as

I =
∫

R̄
√
−gd4x (1.14)

where d4x is the element of volume in four-dimensional space.

Considering the field equations may be derivable from the variational principle

δ (I + J) = 0 (1.15)
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where J is defined by

J =
∫

L
√
−gd4x (1.16)

The L here represents matter’s Lagrangian density. The field equation obtained by Sen

[Sen(1957)] using the above variational principle is defined as

Ri j −
1
2

Ri j +
3
2

φiφ
j − 3

4
gi jφ

k
φk =−8πTi j (1.17)

1.7 Sen-Dunn Theory

In the last decades, many gravitational theories alternating with Einstien’s theory of grav-

itation have been proposed by many cosmologists. Einstein’s theory of general relativity,

or as said in his novel idea, introduced the physics-based geometrization principle, which

is identified by the Riemannian space-time metric tensor as with the presence of gravi-

tational potential. Brans-Dicke’s theory [Brans & Dicke(1961)] is one of the straightfor-

ward scalar-tensor theories of gravitation that geometrize a tensor field. A scalar field is

still foreign to the geometry, however. Brans-Dicke’s phenomenon started with Mach’s

idea that inertia comes from the acceleration of the general masses distributed around the

universe. Also, Lyra proposed a theory by adding a gauge function to the less manifold

structure in Riemannian geometry, which nearly resembles Wely’s geometry. Later, Sen

and Dunn [Sen & Dunn(1971)] formulated changing Einstein’s field equation and pro-

posed a new scalar-tensor theory of gravitation based on Lyra geometry. The scalar field

is characterized by a function defined by x0 = x0(xi) where it is pointed out that in a four-

dimensional Lyra manifold, xi is a co-ordinate, and the metric tensor gi j represents the

manifold’s metric tensor field.

Sen and Dunn [Sen & Dunn(1971)] presented the equation where both scalar and tensor

are present and are expressed as:
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Ri j −
1
2

gi jR = ω(x0)−2
(

x0
,ix

0
, j −

1
2

gi jx0
,kx0,k

)
−8πG(x0)−2Ti j (1.18)

The aforementioned equation may alternatively be rewritten in terms of φ as φ = φ(xi)

Ri j −
1
2

gi jR = ωφ
−2
(

φ,iφ, j −
1
2

gi jφ,kφ
,k
)
−8πGφ

−2Ti j (1.19)

In natural units for c = 1,8πG = 1 the above equation transfoms to

Ri j −
1
2

gi jR = ωφ
−2
(

φ,iφ, j −
1
2

gi jφ,kφ
,k
)
−φ

−2Ti j (1.20)

where

ω = 3
2

Ri j = Ricci tensor

R = Ricci scalar

Ti j = Energy-momentum tensor

1.8 Mathematical Formulation of Sen-Dunn Theory

Sen and Dunn [Sen & Dunn(1971)] considered a Lyra manifold in four dimensions that

possesses a hyperbolic metric tensor and serves as the foundation for a scalar-tensor the-

ory of gravity. To obtain the exterior (vacuum) field equations, it is necessary to use the

variational principle.

δ

∫
Wdx1...dx4 = 0 (1.21)

where an absolute invariant serves as the integrand. The curvature tensor’s simplest vari-

ational principle is

δ

∫
K(−g)

1
2 x0dx1...x0dx4 = 0 (1.22)
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Under coordinate and gauge translation, gauge factors turn the integrand into an ulti-

mate integral. The other potential constraints include

W =W (−g)
1
2 (x0)4 (1.23)

Here the curvature scalar is provided as

K = gi jKi j = (x0)−2R+3(x0)−1
φ

i
;i +

3
2

φiφ
i +

3
2

◦
φiφ

i (1.24)

Sen and Dunn considered (1.15) and have iteratively looked into its effects. Substitution

of (1.17) in (1.15) and independent alterations of gi j and φi arise in the equations for the

external fields.

Ri j −
1
2

gi jR+
3
2
(x0)2

φiφ j −
3
4
(x0)2gi jφkφ

k

− 3
4
(x0)2gi j

◦
φkφ

k +
◦

φkφ j = 0
(1.25)

3φi +
3
2

◦
φi = 0 (1.26)

The two pairs of equations are combined to create the final set of equations:

Ri j −
1
2

gi jR−ω(x0)−2x0
,ix

0
, j +

1
2

ω(x0)−2gi jx0
,kx0,k = 0 (1.27)

Where the set
◦
φi = (x0)−1[log(x0)2],i and ω = 3

2 . The equation for the interior (matter)

component is then written as

Ri j −
1
2

gi jR−ω(x0)−2x0
,ix

0
, j +

1
2

ω(x0)−2gi jx0
,kx0,k =−[8πG/(x0)2]Ti j (1.28)

Comparing the equation (1.21) with Brans and Dicke’s interior field equations. Thus

obtaining the equation

Ri j−
1
2

gi jR−ωφ
−2

φ,iφ, j+
1
2

ωφ
−2gi jφ,kφ

,k =−(8π/c2)Ti j+φ
−1(φ,i; j−gi j□φ) (1.29)
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Thus the Sen-Dunn theory is considered a particular case (1.22), wherein Brans-Dicke

scalar function φ meets the condition

φi; j −gi j□φ = 0 (1.30)

where ω = 3/2 is Brans-Dicke’s coupling constant. The contrast between the Sen-Dunn

theory and the Brans-Dicke theory isn’t quite clear-cut, though, because the equations of

motion are different.

1.9 Work related to Sen-Dunn theory

Halford [Halford(1972)] obtained an exact closed-form solution of the field equations

corresponding to a scalar-tensor theory similar to the B-D approach. The scalar-tensor

treatment based on Lyra’s geometry predicts the same effect within observational limits

as Einstein’s theory.

Reddy [Reddy(1973)] demonstrated that Birkhoff’s Theorem of general relativity holds

for all scalar fields, regardless of their nature, in the gravitational scalar-tensor theory of

Sen-Dunn. On the other hand, Birkhoff’s Theorem is only valid in the B-D theory for the

scalar field independent of time.

Reddy [Reddy(1977)] demonstrated that Birkhoff’s Theorem of general relativity is

also true in the presence of an electromagnetic field by using a time-independent scalar

field in the scalar-tensor theory proposed by Sen and Dunn [Sen & Dunn(1971)]. As

a result, he suggested that the Sen-Dunn gravitational theory be deemed an enhanced

concept of the Brans-Dicke theory.

Krori and Nandy [Krori & Nandy(1977)] obtained a non-static solution and showed

that the Birkhoff theorem does not hold for Ross or Sen-Dunn theory when the scalar field

remains a function of t only. Also, the solution obtained in Sen-Dunn’s theory contains

Mach’s principle, which states an improvement of Brans-Dicke’s theory regarding the
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Mach principle. One of the components of Marder’s metric is influenced by the existence

of scalar interaction x0.

Roy and Chatterjee [Roy & Chatterjee(1980)] obtained a class of exact solutions for a

non-static cylindrically symmetric space time of Marder in line with vacuum field equa-

tions in Sen-Dunn gravitational theory. They discovered that the wave aspect of Einstein’s

theory is preserved via solutions.

Roy and Chatterjee [Roy& Chatterjee(1981)] studied plane-symmetric static charged

dust distribution in Sen-Dunn Theory. By considering the relation between the four com-

ponents of the metric tensor, the electromagnetic potential ψ and the scalar interaction x0

and obtained that the ratio σ

ρ
is related to the scalar interaction x0 giving that the charge

density far exceeds the mass density if the values are small and also the function x0 and

the electromagnetic potential ψ becomes singular at spatial infinity.

Singh & Rai [Singh & Rai(1983)] studied and derived a field equation by taking grav-

itation as a scalar and tensor field, considering Einstein’s theory’s mathematical and phys-

ical foundation.

Reddy and Venkateswarlu [Reddy & Venkateswarlu(1987)] obtained a homogeneous

and anisotropic cosmological model considering the gravitational fluid as a perfect fluid

with the pressure equal to energy density describing the universe’s expansion.

Mukherjee [Mukherjee(2003)] studied and obtained a class of exact solutions of the

non-vacuum field equation of Sen-Dunn gravitational theory considering the relativistic

magneto-fluid proposed by Lichnerowicz for the cylindrically symmetric Einstien Rosen

metric.

Mukherjee [Mukherjee(2004)] determined the solution obtained from the study of

static spherically symmetric anisotropic fluid distribution dispersion when an electromag-

netic field is present in the Sen-Dunn gravitational theory with the Reissner-Nordstrom

solution over the boundary, obtaining a non-negative expression for the mass density and

pressure.

Venkateswarlu et al. [Venkateswarlu et al.(2011)] studied the Bianchi type-I space-
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time with the context of cosmic string in the scalar-tensor theory proposed by Sen-Dunn,

obtaining the existence of the cosmic string in the Sen-Dunn theory of gravitation.

Venkateswarlu et al. [Venkateswarlu et al.(2013a)] used Bianchi type-V I0 cosmologi-

cal model in the presence of a cosmic string in the framework of Sen-Dunn gravitational

theory, identifying the existence of cosmic string in the geometry.

Venkateswarlu et al. [Venkateswarlu et al.(2013b)] discussed three parts of the cosmic

string considering higher dimensional FRW space-time in Sen-Dunn’s theory of grav-

itation. They observed that the scalar field in Sen-Dunn’s theory causes the reduction

of extra dimension in the context of the cosmic string with a different range of metric

potential.

Venkateswarlu et al. [Venkateswarlu et al.(2013c)] studied spatially isotropic and ho-

mogeneous LRS Bianchi type-III space-time with the presence of a string cosmological

model where they obtained the existence of the string in the scalar field and also found

the interlink in a gravitational scalar-tensor theory derived by Sen and Dunn.

Ghate and Sontakke [Ghate & Sontakke(2014)] studied the universe when filled with

dark energy taking the cosmological model Bianchi type-IX in the Sen-Dunn scalar-tensor

theory, taking two cases of scale factor where they obtained a matter-dominated and dark

energy era of the universe.

1.10 Work related to Bianchi space-time

[Bianchi(1918)] obtained the structural constants of nine different types of Bianchi type I-

IX space-time. Later, Taub [Taub(1951)], Ellis & MacCallum [Ellis & MacCallum(1969)]

and many other authors applied and studied Bianchi type cosmological models in general

relativity and alternative theories of general relativity. Some related works on Bianchi

type-III, V I0, and IX cosmological models are mentioned below.

Ftaclas and Cohen [Ftaclas & Cohen(1979)] studied tilted Bianchi type-III space-time,

obtaining an anisotropic solution that is either rotating or tilted and non-rotating.
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Lorenz [Lorenz(1982a)] obtained the barrel type singularity solving the exact solution

for the stiff matter and electromagnetic field in the Bianchi type-III model.

Chakraborty [Chakraborty(1991)] obtained a class of cosmological models of strings

both in the presence of a magnetic field and without a magnetic field in Bianchi type-V I0

space-time.

Latifi et al. [Latifi et al.(1994)] showed that the Bianchi type-IX cosmological models

are non-integrable in the Painleve sense and have no vacuum solutions.

Romano and Pavón [Romano & Pavón(1994)] studied the evolution of a Bianchi type-

III cosmological model for both the truncated and the full version of the casual thermody-

namic theory of the non-equilibrium phenomenon, describing the FRW solutions as un-

stable and that de-Sitter solution are stable. The initial isotropy gets rapidly extinguished

in either version of the numerical analysis.

Bali and Dave [Bali & Dave(2002)] examined the bulk viscosity component of the

Bianchi type-III string cosmological model in general relativity, obtaining the cosmolog-

ical parameters for the model. The model received is expanding, shearing, non-rotating

and anisotropic for the large values of the time.

Xing-Xiang [Xing-Xiang(2006)] obtained a string model universe in the presence of

both bulk viscosity and magnetic field in Bianchi type-III space-time which was found to

be inflationary, shearing, and non-rotating.

Pradhan and Amirhashchi [Pradhan & Amirhashchi(2011)] for the anisotropic Bianchi

type-III space-time with changeable EoS parameter, an accurate solution of Einstein’s

field equations were studied. The universe was matter-dominated in the early stages with

a positive EoS parameter, but the universe is accelerating with a negative EoS parame-

ter in the present epoch. The outcome also included cosmological constant, quintessence,

and phantom fluid-dominated universes, which represented the many stages of the cosmos

during cosmic history [Caldwell(2002)].

Yadav and Yadav [Yadav & Yadav(2011)] analysed DE models with adjustable EoS

parameters following two cases. In the first case, matter dominated the cosmos with
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a positive equation of state, but this has changed to a negative equation of state in the

present epoch. As for the second case, various stages of the universe’s evolution are

investigated, allowing for anisotropic DE in the Bianchi type-III model for both cases.

Shamir [Shamir(2011)] deliberately examined the exact solution for Bianchi type-III

cosmology in f(R) gravity, considering some plausible assumptions. The model repre-

sented that the universe’s expansion for a considerable time will cease and attain isotropy.

Reddy et al. [Reddy et al.(2012)] evaluated a homogeneous Bianchi type-III cosmo-

logical model with perfect fluid in f (R,T ) gravitational theory by Harko et al. [Harko

et al.(2011)], assuming that Hubble’s parameter follows Berman’s special rule of varia-

tion [Berman(1983)] obtaining universe’s rapid late-time expansion without initial singu-

larity. The model’s physical parameters diverge in the initial epoch, which tends to zero

for large t.

In modified f (R,T ) gravity and considering Berman’s special rule of variation for

Hubble’s parameter, Reddy et al. [Reddy et al.(2013)] produced an anisotropic Bianchi

type-III DE cosmic model with variable EoS parameter. The model’s EoS and skewness

parameters are all functions of t, showing the accelerating, expanding, a non-rotating

model with no initial singularity.

Santhi et al. [Santhi et al.(2018)] studied the universe with HDE components and em-

ployed proportionality between expansion and shear scalar and hybrid expansion laws for

the average scale factor. The outcome states that the faster expansion of the current epoch

may be caused by the HDE density dominating the universe’s evolution. Even though the

space-time is anisotropic, the HDE model eventually becomes isotropic. Additionally,

the model depicts the transition from the decelerated to the accelerated phase even at low

redshifts that match the quintessence scalar field concept.

Korunur [Korunur(2019)] considered the Bianchi type-III space-time model to inves-

tigate the new Tsallis holographic dark energy (TDHE) model with some well-known

scalar field models, such as tachyon, quintessence, and K-essence.

In Bianchi type-III space-time with imperfect fluid, Akarsu and Kılınç [Akarsu &
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Kılınç(2010)] found a precise solution to Einstein’s field equation, taking into account

exponential and power-law expansion. The model demonstrates that throughout the ac-

celerated expansion period, the universe monotonically approaches isotropy, even with

the existence of anisotropic fluid.

Bali et al. [Bali et al.(2010)] assuming the barotropic condition and shear proportional

to expansion, studied the Bianchi type-III model for the perfect fluid with variable G and

Λ. Behera et al. [Behera et al.(2010)] also discussed bulk viscous anisotropic Bianchi

type-III cosmological models in Einstein’s relativity with time-dependent gravitational

and cosmological constants.

Sharif and Kausar [Sharif & Kausar(2011a)] explored Bianchi type-III space-time for

exponential and power-law volumetric expansion in f(R) gravity. Here the Bianchi type-

III model maintains anisotropic even in late times, whereas in general relativity, it tends

to isotropy.

The interacting dark energy is studied in Bianchi type-III space-time, Amirhashchi

[Amirhashchi(2014)] considering cases when DE and DM interact and when they do not

interact. When DE is considered dense, its EoS parameter crosses the PDL line for both

cases, but in the absence of viscosity, it varies in the quintessence region.

Hatkar et al. [Hatkar et al.(2019)] studied the Bianchi type-III model with bulk viscos-

ity and heat flux in a simplified gravitational theory and discovered the relevance of bulk

viscosity early in the universe’s history, with the heat function being hostile throughout

the transition.

[Xing-Xiang(2005),Yadav et al.(2007),Bali & Pradhan(2007),Upadhaya & Dave(2008),

Tripathy et al.(2008),Pradhan et al.(2010),Amirhashchi et al.(2011),Kiran& Reddy(2013),

Vidya Sagar et al.(2014), Sahoo & Mishra(2015), Sahoo et al.(2017), Dixit et al.(2020)]

are some authors who investigated the Bianchi type-III string cosmological model with

the existence of viscosity and with various contexts.

Amirhashchi et al. [Amirhashchi et al.(2013)] studied a spatially homogeneous and

anisotropic Bianchi type-III space-time filled with barotropic fluid and dark energy. The
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solution that fulfills the most recent observation is derived by considering a scaling factor

that produces a time-dependent deceleration parameter and a scalar expansion proportion-

ate to the shear scalar.

Kiran et al. [Kiran et al.(2015)] obtained a minimally interacting HDE model in Brans-

Dicke theory applying linearly varying deceleration parameters as derived by Akarsu and

Dereli [Akarsu & Dereli(2012)]. The results depicted the finite lifetime scenario of the

universe with HDE density, pressure, and scale factor diverging in a finite period showing

big rip behaviour.

Mishra et al. [Mishra et al.(2018)] investigated different physical parameters on the

Bianchi type-III cosmological model using BVDP in modified f (R,T ) theory with the

expansion scalar being proportional to the shear scalar, demonstrating that their results

are consistent with recent observations.

Pawar and Shahare [Pawar & Shahare(2019)] stated universe’s development under

f (R,T ) gravity for a tilted Bianchi type-III cosmic model is expanding, shearing, and

anisotropic, beginning with a Big Bang singularity at the first epoch.

Naidu et al. [Naidu et al.(2012)] discussed the anisotropic Bianchi type-III dark en-

ergy model in Seaz-Ballester theory with the variational law for generalized Hubble’s

parameter. The model obtained is non-singular and expanding, pointing to DE as the

reasonable contender for the universe’s accelerated expansion.

In the context of Lyra geometry, Samanta [Samanta(2013)] investigated the signifi-

cance of anisotropic DE in the Bianchi type-III cosmological model.

Mahanta et al. [Mahanta et al.(2014)] constructed and discussed the dark energy

model with a variable equation of state (EoS) parameter in an anisotropic Bianchi type-III

cosmological model in the self-creation theory of gravitation. The observation shows the

consistency of the time-varying ω and is found to be negative for the first model. Still, it is

more significant than zero for the second model defining the matter-dominated universe.

Umadevi and Ramesh [Umadevi & Ramesh(2015)] stated the early inflation and late-

period acceleration for the model obtained using variational Hubble’s parameter with the
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existence of HDE and weakly interacting dark matter in Brans-Dicke theory of gravita-

tion.

Raju et al. [Raju et al.(2020)] analyzed the Bianchi type III space-time with a massive

scalar field model with anisotropic dark energy. The decreasing effect of the scalar field

(SF) for the model over time is observed, and the physical parameters thus are independent

of it at late times.

Bali and Jain [Bali & Jain(2007)] investigated the physical features and behaviour of

the Bianchi type-III cosmic model in general relativity with and without a magnetic field

for perfect fluid distribution.

Adhav et al. [Adhav et al.(2011b)] considered the wet, dark fluid behaviour of dark

energy in the Bianchi type-III cosmological model in the absence and presence of a mag-

netic field where current flows along the z-axis. Anisotropy is well preserved with or

without the magnetic field for the model.

Singh and Ram [Singh & Ram(1996)] presented the work on Bianchi type-III cos-

mological model with massive strings. They obtained the exact solution in the magnetic

field’s presence and absence, motivated by the work of Tikekar and Patel [Tikekar &

Patel(1992)]. The models obtained represented the evolution from initial singularity to

empty space-time for an incredibly long period.

Dunn and Tupper [Dunn & Tupper(1976)] generalized the solution of Einstein-Maxwell

field equations for the perfect fluid in the Bianchi type-VI model with the absence and

presence of an electromagnetic field.

Lorenz [Lorenz(1982b)] examined the solution of Einstein-Maxwell equations for

Bianchi type-V I0 model with matter and electromagnetic field. The study showed the

behaviour of the point type singularity, and the models obtained approaches isotropy for

the extensive time t.

Barrow [Barrow(1984)] presented Bianchi type-V I0 space-time as the better simplifi-

cation of the universe with the sense that the universe sometimes isotropizes. Cosmolog-

ical problems such as primordial helium abundance are described.
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Roy et al. [Roy et al.(1985a), Roy et al.(1985b)] discussed the Bianchi type-I and

V I0 cosmological models with the magnetic field. The expansion and contraction of the

Bianchi Type-I and V I0 model rely on the values of the cosmological constant that are

both negative and positive, describing the perfect fluid distribution.

Ribeiro & Sanyal [Ribeiro & Sanyal(1987)] also discussed the Bianchi type-V I0 with

viscous fluid and magnetic field pointing to the contracting model in the absence of mag-

netic field but in presence does not change the nature of singularity.

Patel and Koppar [Patel & Koppar(1991)] studied the viscous Bianchi type-V I0 cosmic

model, assuming some of the mathematical assumptions to solve the exact field equation.

Mohanty and Mishra [Mohanty & Mishra(2002)] expressed that the non-singular

Bianchi type-V I1 cosmological model does not exhibit either the big bang or big crunch

even in the initial epoch or in infinite time but evolves with constant volume representing

a flat model.

For all three models used in the study of Bianchi type-V I0 space-time for a massive

string with a viscous fluid in the existence and non-existence of magnetic field in general

relativity, Bali et al. [Bali et al.(2008a)] concluded a point type singularity at t = 0 for the

models.

Bali et al. [Bali et al.(2008b)] considering material distribution as magnetized bulk

viscous fluid in the massive string, obtained exact solutions for an accelerating Bianchi

type-V I0 cosmic model in general relativity.

Bali et al. [Bali et al.(2009)] imposed different conditions over the free gravitational

field to obtain the LRS Bianchi type-V I0 cosmic model in Einstein’s theory of gravity.

Sharif and Zubair [Sharif & Zubair(2010)] discussed the dynamics and effects of elec-

tromagnetic field on Bianchi Type-V I0 cosmic model in the existence of anisotropic dark

energy, which favours the ΛCDM model.

Adhav et al. [Adhav et al.(2011a)] studied Bianchi type-V I0 cosmological models

with anisotropic dark energy and stated that the importance of anisotropic dark energy

could not be left unnoticed even though accelerating models isotropize the anisotropic
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fluid at late times. The deceleration parameter represents the characteristic behaviour of

decelerating to accelerating at late times, which confirms with the current scenario.

Pradhan et al. [Pradhan et al.(2012)] considering time-dependent deceleration param-

eter, observed the behaviour of anisotropic DE models represented in Bianchi type-V I0

space-time which on suitable conditions approaches isotropy.

Mishra and Sahoo [Mishra & Sahoo(2014)] used the scale-invariant theory of grav-

ity to build a non-singular Bianchi type-V I1 model with moist, dark fluid. The model

increases spatially with a constant volume, compresses briefly throughout evolution, and

does not demonstrate a huge explosion or great crunch in the early and future.

Reddy et al. [Reddy et al.(2016)] established the precise solution of Bianchi type-

V I0 space-time in the Seaz-Ballester scalar-tensor theory of gravity by investigating two

marginally correlated forces, namely matter and anisotropic holographic dark energy

field. In addition, they acquired a non-singular model that extends spatially in the scalar-

tensor field.

Hegazy [Hegazy(2019)] investigated different cases of solution for Bianchi type-VI

cosmological model in the framework of self-creation theory for prefect fluid, indicating

the consistency of anisotropic universe throughout the evolution.

Satish and Venkateswarlu [Satish & Venkateswarlu(2019)] studied two fluid anisotropic

Bianchi type V I0 cosmological models considering the coupled massless scalar field and

time-varying G and Λ in Einstein’s theory of gravitation.

By taking the exponential scale factor and variable Λ parameter, Dewri [Dewri(2018)]

obtained the exact solutions of the field equation for Bianchi type-VI model accommo-

dated with dark energy describing an accelereated expansion model of the universe.

Misner [Misner(1969)] described the behaviour of the Bianchi type-IX ”mixmaster

universe” due to its chaotic and unusual singularity approach.

Waller [Waller(1984)] investigated and discussed the dynamical behaviour of a spa-

tially homogeneous and anisotropic Bianchi type IX universe within the case of an elec-

tromagnetic field.
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According to Uggla and Zur-Muhlen [Uggla & Zur-Muhlen(1990)], an LRS Bianchi

type-IX with ideal fluid models exhibits compactification and decreased dynamics.

King [King(1991)] interpreted the Bianchi type-IX cosmological model as a Fried-

mann universe with complex dynamics and gravitational-wave scenario compatible with

a closed universe.

Burd et al. [Burd et al.(1990)] analyzed the chaotic behaviour of the Bianchi type-

IX model numerically with a perfect fluid. In addition, they calculated and studied the

Lyapunov exponent and its effect in cosmological models.

Bali and Dave [Bali & Dave(2001)] discussed the cosmological parameters of the

Bianchi type- IX string cosmological model in general relativity, assuming the rest energy

density is equal to the string tension density. Later, Bali and Dave [Bali & Dave(2003)]

presented the work on the exact cosmic string model with the existence of bulk viscous

fluid.

De Oliveira et al. [De Oliveira et al.(2002)] determined the dynamical aspect of the

Bianchi type-IX model with dust and the cosmological constant, which is highly complex

and chaotic, presumably for the homoclinic origin.

Bali and Dave [Bali & Dave(2003)] claimed the Bianchi Type-IX universe with bulk

viscous fluid expands with the big bang and decreases as the time increases for the massive

string in general relativity.

Pradhan et al. [Pradhan et al.(2005)] For the presence of viscous fluid, presented a

homogeneous Bianchi type-IX model with viscosity claiming shear, non-rotating and

anisotropic model throughout the cosmic time resulting in physically decaying law for

the cosmological constant.

Considering some plausible mathematical assumptions, Bali and Yadav [Bali & Ya-

dav(2005)] discussed the behaviour of the Bianchi type-IX cosmological model in the

existence and non-existence of viscosity in GR.

Three types of models of in corresponding to geometric string, Tabayasi string and

Barotropic string are discussed in the framework of scalar-tensor theory for Bianchi type-
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IX space-time. Reddy and Naidu [Reddy & Naidu(2007)] stated that for the geometric

and barotroic string, the models are non-singular models where the physical parameters

are possible for the understanding of the ultimate universe. Whereas, for the Takabayasi

string model it is not possible to discussed the physical properties due to unobtainable

explicit form of the model.

For the homogeneous Bianchi type-IX cosmological model for perfect fluid with an

electromagnetic field, Tyagi and Chhajed [Tyagi & Chhajed(2012)] interpreted the model

as expanding with shearing and non-rotating in general.

In the context of Seaz-Ballester scalar-tensor theory, Ghate and Sontakke [Ghate &

Sontakke(2014)] arrived at the answer by utilising the specific rule of variation for Hub-

ble’s parameter suggested by Bermann in the magnetized Bianchi type-IX dark energy

model. The model is anisotropic throughout development and devoid of a big-bang sin-

gularity.

With studying the dynamics of the expansion and rotation of the Bianchi type-IX

model, Sofuoğlu [Sofuoğlu(2016)] investigated and explored using the enhanced f (R,T )

gravity theory, identifying shear-free does not counterpart in the assumed theory.

Assuming the context of bulk viscosity and flat potential, Sharma and Poonia [Sharma

& Poonia(2021)] formulated and obtained the solution of the Bianchi type-IX universe,

indicating the continuous expansion of the universe and entering isotropy for certain spe-

cific values.

1.11 Hubble’s law and Parameter

According to Hubble’s findings, the speed at which galaxies move away from the Earth is

related to their distance or that of the recession. Recessional velocity is equal to distance

times (Hubble’s constant)

i.e.V = HD (1.31)
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V denotes the galaxy’s measured motion away from Earth, usually in km/sec.

H is Hubble’s constant in km/sec/Mpc.

D is the distance of galaxies in MPc.

According to the relationship above, the Hubble parameter or Hubble constant H specifies

the pace of cosmic expansion. H = V
D calculated the recession velocity V of an object at

a distance D. Also it is the logarithmic derivative of the scale factor a(t) i.e H = ȧ
a . Since

the mean recessional speed of the cluster is computed from the motions of these individ-

ual members, having a significant random motion may introduce substantial uncertainty

in the computation of the mean recessional speed.

When this rate is used to compute the value H, it should accept the value with a reser-

vation that has devotedly worked for many decades for the correct evaluation of H. In

1929, Hubble calculated that the Hubble constant, also known as the expansion fac-

tor, was worth approximately 500km/sec/Mpc. Two groups of astronomers have been

at odds for many years. Alan Sandage and his coauthors make a claim by noting that

H = 50km/sec/Mpc. Also, Vaucauleurs and his coauthors argue that the value should be

around 10km/sec/Mpc. But many outsiders thought the geometric mean of their value

H = 71km/sec/Mpc was a good compromise. The controversy persists while authors

often work with some intermediate value of H. In the sixties and seventies, authors had

done lots of work with H = 75km/sec/Mpc. Considering the problem’s numerous facets

and any inherent uncertainty in the decision. Dressler contends that a more fair value

for H should be H = 70km/sec/Mpc. Many researchers are, however, currently working

with the value of 50km/sec/Mpc. But from the latest source the Hubble space, Telescope

key team came up with the answer

H = 75+/−8km/sec/Mpc. (1.32)
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And finally, WMAP came up with

H = 71+/−3.5km/sec/Mpc (1.33)

where 1MPc = 3.26 million light years.

1.12 Deceleration Parameter

The dimensionless parameter used in relativity and cosmology to calculate the cosmic

acceleration of the universe’s expansion is referred to as the deceleration parameter.

q =−aä
ȧ2 (1.34)

where a(t) is the universe’s average scale factor, and the above dots represent the deriva-

tives to the appropriate period. When q is negative, the universe expands more quickly

than when it is positive because the value of q depends on whether ä is positive or nega-

tive. Deceleration parameter q was first defined with the assumption that it would have a

positive value. However, it has been determined through current research and empirical

results that our universe is speeding at the moment rather than slowing down. It is thought

that dark energy, which rules the cosmos with positive energy density and negative pres-

sure, causes the necessary acceleration in the universe’s late-time development.

In addition, the deceleration parameter q is described in terms of Hubble’s parameter H

as

q =− d
dt

(
1
H

)
−1 (1.35)

Riess et al. [Riess et al.(1998)] team was the first to propose the accelerating universe.

The deceleration parameter q is more significant than −1 for all proposed kinds of mat-

ter, although phantom dark energy violates all energy criteria. As a result, for the ex-

panding universe, Hubble’s parameter H should be decreasing, causing the local expan-
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sion of space to slow down. The cosmological model presented by Berman and Go-

mide [Berman & Gomide(1988)] has a constant slowing value, which is well developed

into cosmological models with variable deceleration parameters [Mishra et al.(2016),

Tiwari et al.(2016b), Sahoo et al.(2018)], linearly varying deceleration parameter [Ad-

hav(2011),Akarsu & Dereli(2012),Sarkar et al.(2014)] and bilinear deceleration parame-

ter [Mishra & Chand(2016), Mishra & Chand(2017), Mishra & Dua(2019)].

1.13 Expansion Scalar

The volume expansion scalar measures how the fractional rate of volume expansion of a

tiny spherical object changes over time. It is expressed as

θ = 3H = 3
ȧ
a

(1.36)

1.14 Anisotropic Parameter

The implementation of variable anisotropic parameters leads to finding a suitable EoS

in such a way that precisely confirms observations, compared to a constant anisotropic

model that has shown only a constant EoS versus cosmic time.

Am =
1
2

3

∑
1

(
∆Hi

H

)2

=
2σ2

3H2 (1.37)

1.15 Shear Tensor:

The rate of shape deformation is described by the shear σ , constructed from the difference

between the expansion rates of the scale factors. It also determines the distortion in the
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fluid flow, leaving the volume invariant. It is defined by:

σi j =
1
2
(
ui; j −u j;i

)
+

1
2
(
u̇iu j −u ju̇i

)
(1.38)

The magnitude of σi j is the shear σ2 defined by

σ
2 =

1
2

σi jσ
i j (1.39)

1.16 Energy condition

The energy conditions are crucial for comprehending the universe’s various characteris-

tics, including its current phase of accelerated expansion and the potential existence of

so-called phantom fields. Also, the cosmic models are further constrained by energy con-

straints. These conditions may be critical in determining cosmological development, no-

tably the acceleration or slowdown of cosmic fluid and, as a result, the creation of Big Rip

singularities. The cosmological solutions and associated equations of state may also be

categorised based on energy conditions. Transformations from the Jordan framework to

the Einstein frame show a qualitative difference in certain energy circumstances. Initially,

the energy condition is derived from the well known Raychoudhuri equation which de-

scribe the null and timelike geodesics with positve energy density [Raychaudhuri(1979)].

The energy conditions for the perfect fluid distribution can be interpreted in terms of

ρ and p as follows:

• Null Energy Condition (NEC): ρ + p ≥ 0.

• Weak Energy Condition (WEC): ρ + p ≥ 0 and ρ ≥ 0.

• Strong Energy Condition (SEC): ρ + p ≥ 0 and ρ +3p ≥ 0.

• Dominant Energy Condition (DEC): ρ + p ≥ 0 and |ρ| ≥ |p|.
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1.17 ΛCDM model

The findings of modern cosmology stated the ΛCDM model as the standard cosmological

model that provides the current scenario of cosmic evolution, considerably the accelerat-

ing universe. There exist three components: first, the cosmological constant denoted by

Λ, which is considered the component associated with the dark energy; second, the cold

dark matter marked as CDM; and third, the ordinary matter. It is viewed as the parame-

terization of the Big Bang cosmological model. The existence of the cosmic microwave

background anisotropies [Page et al.(2003),Hu & Dodelson(2002)], the large-scale struc-

ture distribution of galaxies [Bernardeau et al.(2002), Bull et al.(2016)], the existence of

the abundances of hydrogen, helium, and lithium [Steigman(2007), Cyburt et al.(2016)],

the accelerating expansion of the universe [Riess et al.(1998),Perlmutter et al.(1999)], all

can be considered as the reasonable properties of the ΛCDM model.

1.18 Dark Energy and Dark Matter

The tremendous success in modern cosmology is the discovery of cosmic acceleration.

The idea of the accelerating universe came to existence after the observation presented

by Supernovae Type Ia (SNe Ia) [Riess et al.(1998),Riess et al.(2004)], High-redshift Su-

pernova Search Team [Perlmutter et al.(1999)], WMAP observations [Spergel & Stein-

hardt(2000)] and BAO [Eisenstein et al.(2005)]. Dark energy thus is one of the most

important and widely studied research areas due to its involvement in cosmic acceleration

and its repulsive force nature which acts as anti-gravity. Dark energy is the source of the

universe’s accelerated expansion. Dark energy is thought to exert negative pressure, caus-

ing the cosmos to expand faster when it interacts with gravity. According to the findings,

dark energy occupies 73% of the cosmos. Dark matter is pressureless stuff that interacts

exceptionally weakly with conventional matter particles. Zwicky demonstrated the pres-

ence of dark matter in the 1930s by comparing the coma cluster’s dispersion velocities
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of the galaxies to the observed star mass. Because dark matter does not reflect electro-

magnetic forces, its existence is discovered by gravitational impacts on visible matter.

Also, dark matter is understood as the remnants of stars of the previous cycle which is

deteced as the microwave background. Dark matter could be in two possible forms, hot

and cold [Narlikar(2002)][p.363,407]. Dark matter is thought to have an important role

in developing large-scale structures like galaxies and galactic clusters. Dark matter is

hypothetical matter that does not emit or reflect light or electromagnetic radiation. Dark

matter is a commonly recognized theory by the cosmologist as there must be a particular

matter that interacts with ordinary matter gravitationally, helping structure formation. The

present universe is governed by 23% of dark matter with 4% of usual baryons in the uni-

verse. Many cosmologists reviewed their work in particle detection of dark matter [Smith

& Lewin(1990), Bertone et al.(2005)], which may consist of weakly-interacting massive

particles [Jungman et al.(1996), Pospelov et al.(2008), Arkani-Hamed et al.(2009)], cold

dark matter [Dubinski & Carlberg(1991),Liddle & Lyth(1993),Navarro(1996),Spergel &

Steinhardt(2000)] and many other candidates governing the dark matter.

Einstein in 1917 introduced the cosmological constant in his field equation which he

later considered non-efficient. However, it is considered by many as a natural or most

straightforward candidate for dark energy for the model that best describes the accel-

erating universe. Thus the best standard model in cosmology is known as the ΛCDM

model, where cosmological constant Λ is cold dark matter. The dynamical behaviour of

dark energy with the cosmological constant is well developed and with outstanding ob-

servations [Weinberg(1989),Peebles & Ratra(1988),Sahni & Starobinsky(2000),Sahni &

Starobinsky(2006),Carroll(2001),Padmanabhan(2003), Peebles & Ratra(2003),Copeland

et al.(2006), Frieman et al.(2008), Bamba et al.(2012), Li et al.(2011)]. Some of the es-

sential scalar-field models of dark energy are quintessence [Steinhardt et al.(1999), Zim-

dahl et al.(2001),Tsujikawa(2013)], tachyons [Sen(2002),Padmanabhan(2002)], chaplain

gas [Gorini et al.(2003),Bento et al.(2002),Debnath et al.(2004),Guo & Zhang(2007),El-

mardi et al.(2016)], phantom [Caldwell(2002),Nojiri & Odintsov(2006),Ludwick(2017)],
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k-essence [Armendariz-Picon et al.(2000), Armendariz-Picon et al.(2001), Malquarti et

al.(2003),Tian & Zhu(2021)], quintom [Wei et al.(2005),Guo et al.(2005),Feng et al.(2006),

Leon et al.(2018)],h-essence [Wei & Cai(2005)] and ghost condensate [Arkani-Hamed et

al.(2004), Piazza & Tsujikawa(2004)]. The above literature described the universe with

a negative pressure executed by dark energy. Although the cosmic acceleration of the

universe with dark energy is widely observed and studied by many, it still lacks a piece of

factual information or cosmological data that can precisely distinguish the natural back-

ground and boundary of the evolution of the universe.

1.19 Jerk and Statefinder parameter:

The jerk parameter studies the rate of change of deceleration parameter q. The measure

of this jerk shows the transition of the deceleration parameter or the universe’s evolution

from decelerating to the accelerating phase. Mathematically it is defined as:

j =
...a

aH3 = q+2q2 − q̇
H

(1.40)

A pair of the statefinder parameter is introduced by Sahni et al. [Sahni et al.(2003)] to

characterize the dark energy models, particularly the interacting models. The parameter

(r,s) is as mentioned below:

r =
...a

aH3 (1.41)

s =
r−1

3(q− 1
2)

(1.42)

As for the ΛCDM model and CDM the value limit for (r,s) = (1,0) and (r,s) = (1,1)

respectively. For the limit r < 1 and s > 0 the phantom and quintessence dark energy

region is distinguished. Also, the Chaplygin gas is identified under the limit r > 1 and s <

0. [Farajollahi et al.(2011), Singh & Kumar(2016), Santhi et al.(2017a), Panotopoulos &
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Rincón(2018),Naidu et al.(2019),Varshney et al.(2019),Saleem & Imtiaz(2020)] are some

authors who investigated different cosmological models with the satefinder parameter.

1.20 Aims and Objective of the Research Work

The aims and objectives of the research proposal are as under:

• To discuss Bianchi Type-III Dark Energy Model with Charged Fluid Distribution

in Sen-Dunn Theory.

• To discuss Bianchi Type-VI Dark Energy Model with Variable Deceleration Param-

eter in Sen-Dunn Theory

• To investigate Viscous Bianchi-IX Dark Energy Model in Sen-Dunn Theory of

Gravitation.

• To investigate Bianchi Type-III Cosmological Model with Viscous Fluid in Sen-

Dunn theory of Gravitation.

• To investigate Magnetized Bianchi Type-VI Model with Variable Deceleration Pa-

rameter in Sen-Dunn Theory.

• To discuss Bianchi Type- IX Cosmological Model Universe filled with Radiation in

Sen-Dunn Theory.

1.21 Methodology and Tools

In this thesis, the research primarily deals with the gravitational scalar-tensor theory pro-

posed by Sen and Dunn [Sen & Dunn(1971)]. In recent years, the study of the alternative

theories of gravitation has gained momentum in understanding the cosmological models

of the universe. The most comprehensive theories of gravitation that are widely used to
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research the cosmic model of the universe are Einstein’s general theory of relativity and

the alternate gravitational theory. Modern physics theories typically consist of a math-

ematical model defined by a particular set of differential equations and supported by a

mathematical conclusion that makes some significant claims about the nature of the phys-

ical universe. Therefore, the construction of the cosmological model plays a vital role in

asserting the universe’s evolution and shape and the ultimate fate of the universe in mod-

ern cosmology. The collection of differential equations that are not linear is theoretically

generated from the mathematical formalism and the energy-momentum tensor, and these

equations are solved for the universe’s physical properties. Then, the solutions are inter-

preted by plotting these parameters. Next, the material and dynamical properties of the

cosmological parameters are compared with the recent astrophysical and cosmological

observational data of different experimental probes. For this research work a secondary

data is used with reference to journal publication and books in this field which are avail-

able in the library and internet. Finally, the plotting of graphs is executed using software

like Mathematica, Sci-lab, Python, and Reduce-algebra to solve the differential equations

of the field equations.

1.22 Importance of the study

Since the introduction of the scalar-tensor theory of gravitation a few decades ago, it

has become the alternative theory to Einstein’s general theory of relativity since it dis-

plays the lower level of a more fundamental theory and its phenomenon of explaining

the recent remark of accelerating universe and solving the cosmological constant prob-

lem. The scalar-tensor theory was highly unfolded after Brans-Dicke proposed the theory.

Sen-Dunn is one of the scalar-tensor theories of gravitation, considered a special case of

Brans-Dicke’s theory. But in Sen-Dunn’s theory, both the tensor and scalar field are in-

trinsically geometrized, whereas Brans-Dicke’s scalar field remains alien with the tensor

field being geometrized. Sen-Dunn theory describes the accelerating universe which is
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consistant with the recent observations also it can unify gravity with other fundamental

forces, such as electroweak forces. Bianchi Type cosmological model is important since it

is homogeneous and anisotropic, and the isotropy is studied over time. Bianchi Type-III,

VI, and XI space-time are considered in this research to obtain the cosmological model

of the universe within the framework of Sen-Dunn’s theory of gravitation. Therefore, this

research seeks to find and solve problems in Sen-Dunn gravitational theory with cosmic

factors and observe the physical findings with the recent day cosmological observation.
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