
Chapter 3

Viscous Bianchi Type-IX Dark Energy

Cosmological Model in Sen-Dunn

Theory of Gravitation

3.1 Introduction

Sen and Dunn [Sen & Dunn(1971)] scalar-tensor theory of gravitation is an expansion of

the well-known Brans-Dickie [Brans & Dicke(1961)] theory of gravitation. The expan-

sion and keen interest in a scalar-tensor theory of gravitation are developed to study the

cosmological model of the universe. In General Relativity, homogeneous and anisotropic

models have been widely studied to bring out the pragmatic view of the universe. Gen-

erally, Bianchi type IX represents a non-flat model that admits expansion and rotation

and shear being anisotropic. The bulk viscous matter and pressure produce the expan-

sion and acceleration of the universe [Fabris et al.(2006), Singh(2008a), Avelino & Nu-

camendi(2009), Asgar & Ansari(2014)]. Some authors [Pradhan et al.(2005), Bali & Ya-

dav(2005), Ghate & Sontakke(2013)] have discussed the Bianchi type-IX cosmological

model with the presence of viscous fluid in different cosmological theories. Thus, mo-
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tivated by the above literature, the Bianchi type-IX space-time is studied with bulk vis-

cosity investigated in the Sen-Dunn theory of gravitation framework. The proportionality

between expansion and shear scalar is taken, leading to the condition A = Bm. The chap-

ter also discuss for the perfect fluid and the fluid obeying equation of state p = γρ where

0 ≤ γ ≤ 1. The physical and geometrical nature of the model is examined.

3.2 Metric and Solutions of field equations

Bianchi Type IX metric is given by

ds2 =−dt2 +A2dx2 +B2dy2 +(B2sin2y+A2cos2y)dz2 −2A2cosy dx dz (3.1)

where A and B are a function of cosmic time t.

The field equations for both scalar and tensor fields for the natural units, (c = 1,8πG = 1)

as proposed by Sen-Dunn, is as given below

Ri j −
1
2

Rgi j = ωφ
−2(φ,iφ, j −

1
2

gi jφ,kφ
,k)−φ

−2Ti j (3.2)

For bulk viscous fluid’s energy-momentum tensor is assumed to be

Ti j = (ρ + p̄)uiu j + p̄gi j (3.3)

Where

p̄ = p−ξ θ (3.4)

Here p, ρ , p̄, ξ and θ are isotropic pressure, energy density, effective pressure, coefficient

of viscosity and expansion scalar, and ui = (0,0,0,1) is the four-velocity vector satisfying

gi juiu j =−1.
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The field equation (3.2) with the help of (3.3) for the metric (3.1) are as follows
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Where overdot over A and B represent ordinary differentiation concerning t.

Defining the average scale factor for a Bianchi type-IX space-time as

a(t) = (AB2)
1
3 (3.8)

Also, the Hubble parameter, expansion scalar, shear scalar, anisotropy parameter, and

deceleration parameter are defined as

H =
ȧ
a

(3.9)

θ = 3H (3.10)

σ
2 =

1
2
(Σ3

i=1H2
i −

1
3

θ
2) (3.11)

Am =
1
3

Σ
3
i=1(

Hi −H
H

)2 =
2σ2

3H2 (3.12)

q =−aä
ȧ2 =

d
dt
(

1
H
)−1 (3.13)

The directional Hubble’s parameter is represented by Hi, where i = x,y,z.

The three independent field equations (3.5)-(3.7) contains A,B, p̄, ρ , φ , unknown param-

eters. To obtain the solution, here introduce more conditions by assuming some physical

condition or by the arbitrary mathematical notion.

Considering the shear scalar is proportional to the expansion scalar [Collins et al.(1980)]
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to obtain the explicit solution, which leads to the relation of the metric potential as

A = Bm (3.14)

where m is the constant.

Considering the power law relation between the gauge function φ and the scale factor

a(t) [Johri & Desikan(1994)]

φ = φ0aα = φ0V
α

3 (3.15)

Here, considering the characterized scale factor [Sharma et al.(2019), Dixit et al.(2020)]

a(t) = exp
[ 1

β

√
2β t + k

]
(3.16)

where β and k are positive constant.

Using the equations (3.16),(3.14) with (3.8), the metric potential is obtained as

A = exp
[ 3m

β (m+2)

√
2β t + k

]
(3.17)

B = exp
[ 3

β (m+2)

√
2β t + k

]
(3.18)

Thus the metric (3.1) reduces to the form as

ds2 =

[
−dt2 + exp

[ 6m
β (m+2)

√
2β t + k

]
dx2

+ exp
[ 6

β (m+2)

√
2β t + k

]
dy2 +

(
exp

[ 6
β (m+2)

√
2β t + k

]
sin2y

+ exp
[ 6m

β (m+2)

√
2β t + k

]
cos2

)
dz2

−2exp
[ 6m

β (m+2)

√
2β t + k

]
cosy dx dz

]
(3.19)
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3.3 Physical and Geometrical properties of the model

The model’s physical components as spatial volume V , Gauge function φ , Hubble param-

eter H, expansion scalar θ , mean anisotropy parameter Am, shear scalar σ2, and deceler-

ation parameter q is calculated as follows:

Spatial Volume,

V = exp[
3
β

√
2β t + k] (3.20)

Gauge function,

φ = φ0

(
exp[

α

β

√
2β t + k]

)
(3.21)

Hubble parameter,

H =
1√

2β t + k
(3.22)

Expansion scalar,

θ = 3H =
3√

2β t + k
(3.23)

Mean Anisotropy Parameter,

Am =
2(m−1)2

(m+2)2 = constant (̸= 0 f or m ̸= 1) (3.24)

Shear scalar,

σ
2 =

3(m−1)2

(m+2)2(2β t + k)
(3.25)

Also,
σ2

θ 2 =
1
3
(m−1)2

(m+2)2 = constant (̸= 0 f or m ̸= 1) (3.26)

The rate of expansion Hi,

Hx =
3m

m+2
1√

2β t + k
,Hy = Hz =

3
m+2

1√
2β t + k

(3.27)
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Deceleration parameter,

q =
β√

2β t + k
−1 (3.28)

The energy density for the model is obtained as

ρ = φ0exp
(2α

√
(2β t + k)
β

)[36(2m+1)+3α2(m+2)2

4(m+2)2(2β t + k)
+ exp

(−6
√

2β t + k
β (m+2)

)
− 1

4
exp

(6(m−2)
√

2β t + k
β (m+2)

)]
(3.29)

And the effective pressure measures as

p̄ =
φ0

2
exp

(2α
√

(2β t + k)
β

)[ 9(m2 +m+4)
(m+2)2(2β t + k)

+
1
2

exp
(6(m−2)

√
2β t + k

β (m+2)

)
− 3α2

2(β t + k)
− 3β (m+3)

(m+2)(2β t + k)
3
2

] (3.30)

For the identification of ξ , assuming the case that the fluid obeys the equation of state is

given

p = γρ (3.31)

where γ is a constant with (0 ≤ γ ≤ 1). The value of γ determines three cases for the

model:

(i) When γ = 0, the model tends to matter-dominated model.

(ii) When γ = 1/3, the model tends to radiation-dominated model.

(iii) When γ = 1, it follows p = ρ as Zel’dovich fluid or stiff fluid model.

With the use of equation (3.31) further calculating, the isotropic pressure and bulk viscos-
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ity are given as

p = γφ0exp
(2α

√
(2β t + k)
β

)[36(2m+1)+3α2(m+2)2

4(m+2)2(2β t + k)
+ exp

(−6
√

2β t + k
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)
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(3.32)
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β
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√
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[
36γ(2m+1)+3α2(m+2)2(γ −1)+18(m2 +m+4)
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3
2

]
(3.33)

In the case of the fluid being perfect, the term ξ = 0 is considered, resulting that the

effective pressure being equal to the isotropic pressure i.e

p = p̄ =
φ0

2
exp

(2α
√
(2β t + k)
β

)[ 9(m2 +m+4)
(m+2)2(2β t + k)

+
1
2

exp
(6(m−2)

√
2β t + k

β (m+2)

)
− 3α2

2(β t + k)
− 3β (m+3)

(m+2)(2β t + k)
3
2

]
(3.34)
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Figure 3.1: Variation of H and θ vs. t
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Figure 3.2: Variation of q vs. t
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Figure 3.3: Variation of p vs. t
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Figure 3.4: Variation of ρ vs. t

3.4 Energy Condition and Statefinder Parameter

The energy conditions are respectively defined as:

(i) Null Energy Condition: ρ + p ≥ 0

(ii) Weak Energy Condition: ρ ≥ 0, ρ + p ≥ 0

(iii) Dominant Energy Condition: ρ ± p ≥ 0, ρ ≥ 0

(vi) Strong Energy Condition: ρ +3p ≥ 0
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Thus, the energy condition from equations (3.29) and (3.32) is derived as

ρ + p = (γ +1)φ0exp
(2α

√
(2β t + k)
β

)[ 9(m2 +m+4)
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1
2

exp
(6(m−2)

√
2β t + k

β (m+2)

)
− 3α2

2(β t + k)
− 3β (m+3)

(m+2)(2β t + k)
3
2

]
≥ 0

(3.35)
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ρ +3p = (1+3γ)φ0exp
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(3.37)
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Figure 3.5: Variation of energy condition vs. t
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Figure 3.6: Variation of p̄ vs. t

The statefinder parameter {r,s} is defined as

r =
...a

aH3 = 1+3
Ḣ
H2 +

Ḧ
H3 (3.38)

s =
(r−1)

3(q− 1
2)

(3.39)

where q represents the deceleration parameter and H represents the Hubble parameter.
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Figure 3.7: Variation of ξ vs. t

From the equation (3.22) and (3.28), the required statefinder parameter is as follows

r = 1− 3β√
2β t + k

+
3β 2

2β t + k
(3.40)

s =
β 2

√
2β t + k− (2β t + k)β

(2β t + k)(2β −3
√

2β t + k)
(3.41)

From the above result, when t → ∞ the pair {r,s} → {1,0} defines the current ΛCDM

model, starting with Einstein’s static era.

3.5 Conclusion

The solutions of the anisotropic Bianchi type IX cosmological model with bulk viscos-

ity are investigated in the Sen-Dunn theory. In this approach, the dynamical behaviors

of the various physical and geometrical properties are plotted considering the constraints

β = 0.0036, k = 0.000084 [Cunha(2009)], φ0 = 0.07, α = −0.20 and m = 0.5. The

Hubble parameter (H) and expansion scalar (θ) for the model (3.19) are positively de-

creasing and tend to zero as t → ∞ as plotted in Fig. 3.1. The deceleration parameter

58



for the model lies in the range −1 ≤ q < 0 as plotted in Fig 3.2., which claims the uni-

verse is expanding exponentially, in line with recent observational findings [Perlmutter et

al.(1999), Riess et al.(2001)], and that the universe is always accelerating. For the three

cases of γ = 0,1,1/3, the isotropic pressure and energy density for the model (3.19) is

decreasing function for cosmic time t → ∞, as plotted in Fig 3.3 and Fig 3.4. Fig 3.5 and

Fig 3.6 represents the statistical behaviour of the model’s energy condition and effective

pressure. For the fluid obeying the EoS p = γρ , the model’s bulk viscosity is a positively

decreasing time dependence and tends to zero as t → ∞ as plotted in Fig. 3.7. Thus,

claiming that the universe in the early universe was highly viscous but later decreases at

the late time [Dixit et al.(2020)]. The model shows a positively decreasing pressure and

tends to zero for the perfect fluid model as t → ∞. Recently, Sharma and Poonia [Sharma

& Poonia(2021)] investigated that the presence of bulk viscosity may generate cosmic

inflation for the model obtained for the Bianchi type IX space-time. To study the char-

acteristic feature of the accelerating model, the diagnostic pair {r,s} is examined. The

diagnostic pair measures that {r,s} → {1,0} for t → ∞ which represents that the model

approaches the ΛCDM model. The model shows expanding, shearing, and non-rotating,

and the model does not tends to isotropy for the large value of t, since σ

θ
̸= 0. Thus, bulk

viscous plays an important role in studying the dynamic behaviour of the early universe

and the late time universe.
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