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Abstract

Let X be a finite set having n elements. The formula for giving the number of topologies T (n) is still not ob-
tained. If the number of elements n of a finite set is small, we can compute it by hand. However, the difficulty
of finding the number of the topology increases when n becomes large. A topology describes how elements of
a set are spatially related to each other, and the same set can have different topologies. Studying this particular
area is also a highly valued part of the topology, and this is one of the fascinating and challenging research
areas. Note that the explicit formula for finding the number of topologies is undetermined till now, and many
researchers are researching this particular area. This paper is towards the formulae for finding the number of
neutrosophic clopen topological spaces having two, three, four, and five open sets. In addition, some properties
related to formulae are determined.

Keywords: Combinatorics; Neutrosophic Set; Neutrosophic Clopen Topological Space; Number of Neutro-
sophic Clopen Topological Space

1 Introduction

The notion of the NS (neutrosophic set) was originally introduced by Smarandache1 by the generalization of
fuzzy set22 and intuitionistic fuzzy sets (IFSs).2 Salama and Alblowi3 introduced the concept of NTS (neu-
trosophic topological space) after Coker4 introduced IFTS (intuitionistic fuzzy topological space). Nowadays,
several researchers have contributed to NS and NTS (,5,67). Neutrosophic semi-open sets were introduced by
Ishwarya and Bageerathi8 in NTS. Dhavaseelan and Jafari9 introduced generalized Neutrosophic closed sets.
Later, Shanthi, Chandrasekar, and Safina10 generalized semi-closed sets in NTS. Many authors (,1112) also
studied the notion of NSs and discussed various properties.

Recall thar a topology in which every open set is closed will be called a clopen topology (CLT). Many results
for finding the number of topologies (NoTs) have been developed by several researchers (,13,14,15,1617). Au-
thors in (,18,1921) also studied FTS (fuzzy topological spaces) and computed some formulas for finding NoTs
and the number of FTS on a finite set. Recently, Francis, and Adenji20 studied on clopen sets in topological
spaces (TS). In this paper we focus on number of neutrosophic clopen topologies (NCLTs) and related results.
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2 Preliminaries

In the following, X denotes a non-empty finite set of cardinality n, M is a totally ordered set of cardinality
m ≥ 2, and let NX be the collection of all neutrosophic subsets of X whose membership values lies in M .
Also, 0NCL = ⟨ x

(0,1,1) : x ∈ X⟩ and 1NCL = ⟨ x
(1,0,0) : x ∈ X⟩ are taken to denote neutrosophic empty set

and neutrosophic universal set respectively. The following definitions will be useful in the results. Moreover,
open set is used to mean neutrosophic open set (NOS) in this paper.

Definition 2.1. 1 A NS ANCL on a universe of discourse X is defined as ANCL = ⟨ x
(T (x),I(x),F (x)) : x ∈ X⟩

where T, I, F : X →]−0, 1+[. Note that −0 ≤ T (x) + I(x) + F (x) ≤ 3+; T (x), I(x) and F (x) represents
degree of membership function, degree of indeterminacy and degree of non-membership function respectively.

Definition 2.2. 3 Let τNCL ⊆ NX then τNCL is called a NT (neutrosophic topology) on X if
(i) 0NCL, 1NCL ∈ τNCL

(ii) ANCL
1 ∩ANCL

2 ∈ τNCL, for any ANCL
1 , ANCL

2 ∈ τNCL.
(iii)

⋃
ANCL

i ∈ τNCL, for arbitrary family {ANCL
i : i ∈ I} ∈ τNCL.

The pair (X , τNCL) is called NTS and any NS in τNCL is called NOS in X .

Definition 2.3. 16 The Stirling number of the second kind is the number of partitions of a finite set with n
elements into k blocks. It is denoted by S(n, k) or Sn,k and its explicit formula is
S(n, k) = Sn,k = 1

k!

∑k
j=0(−1)j

(
k
j

)
(k − j)n.

3 Results

Definition 3.1. A NT τNCL on a non-empty set X is said a NCLT if it consists of neutrosophic clopen sets,
i.e., if every its NOSs is closed too. The pair (X , τNCL) is called neutrosophic clopen topological space
(NCLTS) and if τNCL contains k-open sets then (X , τNCL) is called NCLTS having k-open sets.

Example 3.2. Let X = {u1, v1, w1} and consider the family τNCL = {0NCL, 1NCL, ANCL
1 , ANCL

2 },
Where 0NCL = ⟨ u1

(0,1,1) ,
v1

(0,1,1) ,
w1

(0,1,1) ⟩, 1NCL = ⟨ u1

(1,0,0) ,
v1

(1,0,0) ,
w1

(1,0,0) ⟩,
ANCL

1 = ⟨ u1

(0.2,0.5,0.3) ,
v1

(0.3,0.6,0.5) ,
w1

(0,0.7,0.4) ⟩, ANCL
2 = ⟨ u1

(0.3,0.5,0.2) ,
v1

(0.5,0.4,0.3) ,
w1

(0.4,0.3,0) ⟩.
Then τNCL is a NCLT on X and so (X , τNCL) is a NCLTS on X .

Proposition 3.3. Arbitrary intersection of NCLTs on X is clopen.

Proof. Let
NNCL

τ =
⋂
i∈λ

τNCL
i ,

where λ is an index set and τNCL
i ∈ NNCL

X , collection of all NCLTs on X . Clearly NNCL
τ ̸= ∅ as

0NCL, 1NCL ∈ NNCL
τ .

Let ANCL, BNCL be any two members of NNCL
τ . Then

ANCL, BNCL ∈ NNCL
τ

=⇒ ANCL, BNCL ∈
⋂

i∈λ τ
NCL
i

=⇒ ANCL, BNCL ∈ τNCL
i ;∀i

=⇒ ANCL ∩BNCL ∈ τNCL
i and ANCL ∪BNCL ∈ τNCL

i ;∀i
=⇒ ANCL ∩BNCL ∈

⋂
i∈ λ τ

NCL
i and ANCL ∪BNCL ∈

⋂
i∈ λ τ

NCL
i ;∀i

=⇒ ANCL ∩BNCL ∈ NNCL
τ and ANCL ∪BNCL ∈ NNCL

τ

Therefore NNCL
τ is a NT on X .

Let ANCL be any element of NNCL
τ , then

ANCL ∈ NNCL
τ =⇒ ANCL ∈

⋂
i∈ λ τ

NCL
i

=⇒ ANCL ∈ τNCL
i ;∀i

=⇒ C(ANCL) ∈ τNCL
i ;∀i

=⇒ C(ANCL) ∈
⋂

i∈ λ τ
NCL
i ;

=⇒ C(ANCL) ∈ NNCL
τ

Since ANCL is arbitrary element of NNCL
τ and C(ANCL) ∈ NNCL

τ implies that every element of NNCL
τ is

NCLS. Hence arbitrary intersection of NCLTs is clopen.
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Remark 3.4. Union of NCLTs on X is not clopen.
Illustration: Let X = {u1, v1} and M = {(0, 1, 1) , (0.5, 0.5, 0.5) , (1, 0, 0)}. Then number of elements in
NX , i.e.,|NX | = 32 = 9. These are
0NCL = ⟨ u1

(0,1,1) ,
v1

(0,1,1) ⟩, 1
NCL = ⟨ u1

(1,0,0) ,
v1

(1,0,0) ⟩, A
NCL
1 = ⟨ u1

(0,1,1) ,
v1

(0.5,0.5,0.5) ⟩,
ANCL

2 = ⟨ u1

(0,1,1) ,
v1

(1,0,0) ⟩, A
NCL
3 = ⟨ u1

(0.5,0.5,0.5) ,
v1

(0,1,1) ⟩,
ANCL

4 = ⟨ u1

(0.5,0.5,0.5) ,
v1

(0.5,0.5,0.5) ⟩, A
NCL
5 = ⟨ u1

(0.5,0.5,0.5) ,
v1

(1,0,0) ⟩,
ANCL

6 = ⟨ u1

(1,0,0) ,
v1

(0,1,1) ⟩, A
NCL
7 = ⟨ u1

(1,0,0) ,
v1

(0.5,0.5,0.5) ⟩.
Here n = 2, m = 3, so JNX (2, 3, 3) = 32 − 2 = 9− 2 = 7.
In this case

τNCL
1 = {0NCL, 1NCL, ANCL

4 } and
τNCL
2 = {0NCL, 1NCL, ANCL

1 , ANCL
2 , ANCL

6 , ANCL
7 } are NCLTs on X .

But τNCL
1 ∪ τNCL

2 = {0NCL, 1NCL, ANCL
1 , ANCL

2 , ANCL
4 , ANCL

6 , ANCL
7 } is not a NCLT on X as ANCL

4 ∩
ANCL

6 = ANCL
3 /∈ τNCL

1 ∪ τNCL
2 .

Proposition 3.5. Union of two NCLTs is again a NCLT if one is contained in the other.

Proof. Let ANCL and BNCL be two NCLTs on X . Let ANCL ⊆ BNCL, then ANCL ∪ BNCL = BNCL,
which is a NCLT on X . Similarly, if BNCL ⊆ ANCL, then ANCL ∪ BNCL = ANCL, which is a NCLT on
X . This shows that union of two NCLTs is again a NCLT if one is contained in the other.

Number of Neutrosophic clopen topology having 2-open Sets:
1. If X = {u1} or |X | = 1 whose neutrosophic values lies in M .
Case I: If M = {(0, 1, 1) , (1, 0, 0)}.
Then, |NX | = 21 = 2. These are

0NCL = ⟨ u1

(0,1,1) ⟩, 1
NCL = ⟨ u1

(1,0,0) ⟩.
In this case we will get only one NT which is τNCL

1 = {0NCL, 1NCL}. This NT is also NCLT.
Case II: If M = {(0, 1, 1), (0.5, 0.5, 0.5), (1, 0, 0)}
Then, |NX | = 31 = 3. These are

0NCL, 1NCL, ANCL
1 = ⟨ u1

(0.5,0.5,0.5) .
In this case also we will get only one NT having 2-open set which is τNCL

1 = {0NCL, 1NCL} and hence a
NCLT.
Case III: If M = {(0, 1, 1), (T, I, F ), (F, 1− I, T ), (1, 0, 0)};T, I, F ∈ [0, 1]
In this case, |NX | = 41 = 4. These are

0NCL, 1NCL, ANCL
1 = ⟨ u1

(T,I,F ) ⟩, A
NCL
2 = ⟨ u1

(F,1−I,T ) ⟩.
In this case also we will get only one NT having 2-open set which is τNCL

1 = {0NCL, 1NCL} and therefore a
NCLT.

Figure 1: NCLT having 2-open sets

2. If X = {u1, v1} or |X | = 2 whose neutrosophic values lies in M .
Case I: If M = {(0, 1, 1), (1, 0, 0)}
Then, |NX | = 22 = 4. These are

0NCL = ⟨ u1

(0,1,1) ,
v1

(0,1,1) ⟩, 1
NCL = ⟨ u1

(1,0,0) ,
v1

(1,0,0) ⟩,
ANCL

1 = ⟨ u1

(0,1,1) ,
v1

(1,0,0) , A
NCL
2 = ⟨ u1

(1,0,0) ,
v1

(0,1,1) ⟩.
In this case, NCLT having 2-open set is one i.e., τNCL

1 = {0NCL, 1NCL}.
Case II: If M = {(0, 1, 1), (0.5, 0.5, 0.5), (1, 0, 0)}
Then, |NX | = 32 = 9. These are

0NCL, 1NCL, ANCL
1 = ⟨ u1

(0,1,1) ,
v1

(0.5,0.5,0.5) ⟩, A
NCL
2 = ⟨ u1

(1,0,0) ,
v1

(0,1,1) ⟩,
ANCL

3 = ⟨ u1

(0.5,0.5,0.5) ,
v1

(0,1,1) ⟩, A
NCL
4 = ⟨ u1

(0.5,0.5,0.5) ,
v1

(0.5,0.5,0.5) ⟩,
ANCL

5 = ⟨ u1

(0.5,0.5,0.5) ,
v1

(1,0,0) ⟩, A
NCL
6 = ⟨ u1

(1,0,0) ,
v1

(0,1,1) ⟩,
ANCL

7 = ⟨ u1

(1,0,0) ,
v1

(0.5,0.5,0.5) ⟩.
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In this case also NCLT having 2-open set is one i.e., τNCL
1 = {0NCL, 1NCL}.

Case III: If M = {(0, 1, 1), (T, I, F ), (F, 1− I, T ), (1, 0, 0)};T, I, F ∈ [0, 1]
In this case, |NX | = 42 = 16. These are

0NCL, 1NCL, ANCL
1 = ⟨ u1

(0,1,1) ,
v1

(T,I,F ) ⟩, A
NCL
2 = ⟨ u1

(0,1,1) ,
v1

(1,0,0) ⟩,
ANCL

3 = ⟨ u1

(T,I,F ) ,
v1

(0,1,1) ⟩, ANCL
4 = ⟨ u1

(T,I,F ) ,
v1

(T,I,F ) ⟩,
ANCL

5 = ⟨ u1

(T,I,F ) ,
v1

(1,0,0) ⟩, ANCL
6 = ⟨ u1

(1,0,0) ,
v1

(0,1,1) ⟩,
ANCL

7 = ⟨ u1

(1,0,0) ,
v1

(T,I,F ) ⟩, ANCL
8 = ⟨ u1

(0,1,1) ,
v1

(F,1−I,T ) ⟩,
ANCL

9 = ⟨ u1

(T,I,F ) ,
v1

(F,1−I,T ) ⟩, ANCL
10 = ⟨ u1

(F,1−I,T ) ,
v1

(0,1,1) ⟩,
ANCL

11 = ⟨ u1

(F,1−I,T ) ,
v1

(F,1−I,T ) ⟩, ANCL
12 = ⟨ u1

(F,1−I,T ) ,
v1

(1,0,0) ⟩,
ANCL

13 = ⟨ u1

(F,1−I,T ) ,
v1

(T,I,F ) ⟩, ANCL
14 = ⟨ u1

(1,0,0) ,
v1

(F,1−I,T ) ⟩.
In this case also NCLT having 2-open set is one i.e., τNCL

1 = {0NCL, 1NCL}.

Proposition 3.6. For |X | = n, |M | = m, M is the any set of neutrosophic values containing (1, 0, 0) and
(0, 1, 1), then number of NCLT having 2-open sets is one.

Proof. The NT having 2-open sets is indiscrete NT only i.e., τNCL = {0NCL, 1NCL}. This NT is NCLT
as 0NCL and 1NCL are complements of each other. Therefore, the number of NCLTS having 2-open sets is
one.

Number of Neutrosophic clopen topology having 3-open Sets:
1. If X = {p} or |X | = 1 whose neutrosophic values lies in M .
Case I: If M = {(0, 1, 1), (1, 0, 0)}
In this case, |NX | = 21 = 2. We will get only one NCLT which is
τNCL
1 = {0NCL, 1NCL} and so no NCLT having 3-open sets. Therefore, the number of NCLT having 3-open

sets is zero.
Case II: If M = {(0, 1, 1), (0.5, 0.5, 0.5), (1, 0, 0)}
In this case, |NX | = 31 = 3, we will get only one NCLT having 3-open sets, which is
τNCL
1 = {0NCL, ANCL

1 , 1NCL} as complement of ANCL
1 i.e., C(ANCL

1 ) = ANCL
1 . Therefore, the number

of NCLT having 3-open sets is one.
Case III: If M = {(0, 1, 1), (T, I, F ), (F, 1− I, T ), (1, 0, 0)};T, I, F ∈ [0, 1]
In this case, |NX | = 41 = 4. We will get no NT having 3-open sets. Therefore, the number of NCLT having
3-open sets is zero.

Figure 2: NCLT having 3-open sets

2. If X = {p, q} or |X | = 2 whose neutrosophic values lies in M .
Case I: If M = {(0, 1, 1), (1, 0, 0)}
In this case, |NX | = 22 = 4. We will get no NCLT having 3-open sets. Therefore, the number of NCLT
having 3-open sets is zero.
Case II: If M = {(0, 1, 1), (0.5, 0.5, 0.5), (1, 0, 0)}
Then, |NX | = 32 = 9. We will get only one NT having 3-open sets, which is τNCL

1 = {0NCL, ANCL
1 , 1NCL}.

Therefore, the number of NCLT having 3-open sets is one.
Case III: If M = {(0, 1, 1), (T, I, F ), (F, 1− I, T ), (1, 0, 0)}, where T, I, F ∈ [0, 1]
In this case, |NX | = 42 = 16. We will get no NT having 3-open sets. Therefore, the number of NCLT having
3-open sets is zero.
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Proposition 3.7. For |X | = n, the number of NCLT having 3-open sets is always one for M containing
(0, 1, 1), (1, 0, 0) and (T, 0.5, F ), T = F ;T, F ∈ [0, 1], and zero for M that does not include neutrosophic
values which are complement to each other i.e., (T, 0.5, F ), T = F ;T, F ∈ [0, 1].

Proof. Let, M be the set containing (0, 1, 1), (1, 0, 0), (T, 0.5, F ), T = F ;T, F ∈ [0, 1], and other neutro-
sophic values.
Case 1: Let |X | = 1, say X = {a}
In this case the NCLT having 3-open sets is {0NCL, ANCL

1 , 1NCL}, where ANCL
1 = ⟨ a

(T,0.5,F ) ⟩.
Case II: Let |X | = 2, say X = {a, b}
In this case the NCLT having 3-open sets is {0NCL, 1NCL, ANCL

2 }, where ANCL
2 = ⟨ a

(T,0.5,F ) ,
b

(T,0.5,F ) ⟩.
Case III: Let |X | = 3, say X = {a, b, c}
In this case the NCLT having 3-open sets is {0NCL, 1NCL, ANCL

3 }, where ANCL
3 = ⟨ a

(T,0.5,F ) ,
b

(T,0.5,F ) ,
c

(T,0.5,F ) ⟩.
Case IV: Let |X | = n(finite), say X = {a1, a2, a3, . . . , an}
In this case the NCLT having 3-open sets is {0NCL, 1NCL, ANCL

n }, where
ANCL

n = ⟨ a1

(T,0.5,F ) ,
a2

(T,0.5,F ) ,
a3

(T,0.5,F ) , . . . ,
an

(T,0.5,F ) ⟩.
It is seen that there exists only one NCLT having 3-open sets. This NCLT contains 0NCL, 1NCL and ANCL

n .
Note that, in ANCL

n every member of X has neutrosophic membership value as (T, 0.5, F ), T = F ;T, F ∈
[0, 1], whose complement is itself i.e., ANCL

n = C(ANCL
n ).

On the other hand, if M does not contain (T, 0.5, F ), T = F ;T, F ∈ [0, 1], then there exist no neutrosophic
subset of X of the form ANCL

n , such that ANCL
n ̸= C(ANCL

n ). Hence there exists no NCLT having 3-open
sets.

Number of Neutrosophic clopen topology having 4-open Sets:
1. If X = {p} or |X | = 1 whose neutrosophic values lies in M .
Case I: If M = {(0, 1, 1), (1, 0, 0)}
In this case, there exists no NCLT having 4-open sets. Therefore, the number of NCLT having 4-open sets is
zero.
Case II: If M = {(0, 1, 1), (0.5, 0.5, 0.5), (1, 0, 0)}
In this case, |NX | = 31 = 3, we will get no NT having 4-open set. Therefore, the number of NCLT having
4-open sets is zero.
Case III: If M = {(0, 1, 1), (T, I, F ), (F, 1− I, T ), (1, 0, 0)};T, I, F ∈ [0, 1].
In this case, |NX | = 41 = 4. We will get one NCLT having 4-open set. Therefore, the number of NCLT
having 4-open sets is one.
2. If X = {p, q} or |X | = 2 whose neutrosophic values lies in M .
Case I: If M = {(0, 1, 1), (1, 0, 0)}
In this case, |NX | = 22 = 4, we will get one NCLT having 4-open sets. Therefore, the number of NCLT
having 4-open sets is one i.e., τNCL

1 = {0NCL, ANCL
1 , ANCL

2 , 1NCL}.
Case II: If M = {(0, 1, 1), (0.5, 0.5, 0.5), (1, 0, 0)}
In this case, |NX | = 32 = 9. We will get three NCLTs having 4-open set. These are

τNCL
1 = {0NCL, ANCL

1 , ANCL
7 , 1NCL}, τNCL

2 = {0NCL, ANCL
2 , ANCL

6 , 1NCL},
τNCL
3 = {0NCL, ANCL

3 , ANCL
5 , 1NCL}.

Therefore, the number of NCLTs having 4-open sets is three.
Case III: If M = {(0, 1, 1), (T, I, F ), (F, 1− I, T ), (1, 0, 0)};T, I, F ∈ [0, 1].
In this case, |NX | = 42 = 16. We will get four NCLT having 4-open sets. These are

τNCL
1 = {0NCL, ANCL

1 , ANCL
14 , 1NCL}, τNCL

2 = {0NCL, ANCL
4 , ANCL

11 , 1NCL},
τNCL
3 = {0NCL, ANCL

2 , ANCL
6 , 1NCL}, τNCL

4 = {0NCL, ANCL
3 , ANCL

12 , 1NCL}.
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Figure 3: NCLT having 4-open sets

Number of Neutrosophic clopen topology having 5-open Sets:
1. If X = {p} or |X | = 1 whose neutrosophic values lies in M .
Case I: If M = {(0, 1, 1), (1, 0, 0)}
In this case, |NX | = 21 = 2, we will get only one NT which is τNCL

1 = {0NCL, 1NCL} and so, there exists
no NCLT having 5-open sets. Therefore, the number of NCLT having 5-open sets is zero.
Case II: If M = {(0, 1, 1), (0.5, 0.5, 0.5), (1, 0, 0)}
In this case, |NX | = 31 = 3, we will get only two NCLTs having 2 and 3-open sets. Therefore, the number of
NCLTs having 5-open sets is zero.
Case III: If M = {(0, 1, 1), (T, I, F ), (F, 1− I, T ), (1, 0, 0)};T, I, F ∈ [0, 1]
In this case, |NX | = 41 = 4. We will get no NT having 5-open sets. Therefore, the number of NCLT having
5-open sets is zero.

Figure 4: NCLT having 5-open sets

2. If X = {p, q} or |X | = 2 whose neutrosophic values lies in M .
Case I: If M = {(0, 1, 1), (1, 0, 0)}
In this case, |NX | = 22 = 4, we will get no NCLT having 5-open sets. Therefore, the number of NCLT having
5-open sets is zero.
Case II: If M = {(0, 1, 1), (0.5, 0.5, 0.5), (1, 0, 0)}
Then |NX | = 32 = 9. We will get two NCLTs having 5-open sets. These are

τNCL
1 = {0NCL, ANCL

1 , ANCL
4 , ANCL

7 , 0NCL}, τNCL
2 = {0NCL, ANCL

3 , ANCL
4 , ANCL

5 , 0NCL}.
Therefore, the number of NCLTs having 5-open sets is two.
Case III: If M = {(0, 1, 1), (T, I, F ), (F, 1− I, T ), (1, 0, 0)};T, I, F ∈ [0, 1]
In this case, |NX | = 42 = 16. We will get no NCLT having 5-open sets. Therefore, the number of NCLT
having 5-open sets is zero.

Proposition 3.8. For |X| = n, |M | = m, M is the any finite set of neutrosophic values containing (1, 0, 0), (0, 1, 1)
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and other neutrosophic values which are complement to each other, then number of NCLTs having mn-open
sets is one and for any other M it is zero.

Proof. In this case, the NT having mn-open sets is discrete NT. This NCLT is also clopen as it contains all
neutrosophic subsets and complement of each subset is also in that NT. Therefore, the number of NCLTS
having mn-open sets is one.
Further, it is found that any other M , with |M | = m > 2, is equivalent to M = {(1, 0, 0), (0, 1, 1)} for NCLT.
But for M = {(1, 0, 0), (0, 1, 1)}, the maximum number of open sets in NCLT is 2n. Since mn ≥ 2n, the
number of NCLTS having mn-open sets is zero.

Corollary 3.9. The minimum number of NOSs in a NCLT is 2 and the maximum number of NOSs in a NCLT
is mn, where n is the number of elements in X and m is the number of elements in M .

Proof. This result is obtained by using Proposition 3.8.

Proposition 3.10. For |X | = n, M = {(0, 1, 1), (T, I, F ), (F, 1 − I, T ), (1, 0, 0)}, where T ̸= F ;T, I, F ∈
[0, 1], then the number of NCLTS having odd number of open sets is always zero.

Proposition 3.11. For |X | = n, M = {(1, 0, 0), (0, 1, 1)} and NNCL
X be the set of all NCLTSs on X whose

membership values lies in M then
(i) NNCL

X contains only NCLTs having 2k-open sets where k = 1, 2, 3, . . . , n.
(ii) Number of NCLTs having 2k-open sets is S(n, k), k = 1, 2, . . . , n.

Proof. Let, |X | = n, M = {(1, 0, 0), (0, 1, 1)} and ηk be the number of NCLTs having k-open sets.
Case I: If |X | = 1 say, X = {u1} whose neutrosophic values lies in M . Then |NX | = 21 = 2. These are

0NCL = ⟨ u1

(0,1,1) ⟩, 1
NCL = ⟨ u1

(1,0,0) ⟩.
In this case we will get only one NCLT which is the indiscrete NT i.e., τNCL

1 = {0NCL, 1NCL}. This shows
that for |X | = 1,
(a) there exists only NCLT having 2n, n = 1 open sets.
(b) there exists 1 NCLT having 21-open sets i.e., η21 = S(1, 1).
Case II: If |X | = 2 say, X = {u1, v1} whose neutrosophic values lies in M . Then |NX | = 22 = 4. These are

0NCL = ⟨ u1

(0,1,1) ,
v1

(0,1,1) ⟩, 1
NCL = ⟨ u1

(1,0,0) ,
v1

(1,0,0) ⟩,
ANCL

1 = ⟨ u1

(0,1,1) ,
v1

(1,0,0) ⟩, A
NCL
2 = ⟨ u1

(1,0,0) ,
v1

(0,1,1) ⟩.
These NCLTs are

τNCL
1 = {0NCL, 1NCL}, τNCL

2 = {0NCL, ANCL
1 , ANCL

2 , 1NCL}.
This gives that the number of open sets in τNCL

1 is 2 and in τNCL
2 is 4 = 22. Therefore, for |X| = 2,

(a) there exist only NCLTs having 2n, n = 1, 2 open sets i.e., τNCL
1 and τNCL

2 .
(b) there exists 1 NCLT having 21-open set and 1 NCLT having 22-open sets i.e., η21 = 1 = S(2, 1) and
η22 = 1 = S(2, 2) respectively.
Case III: If |X | = 3 say, X = {u1, v1, w1} whose neutrosophic values lies in M . Then |NX | = 23 = 8.
These are

0NCL = ⟨ u1

(0,1,1) ,
v1

(0,1,1) ,
w1

(0,1,1) ⟩, 1
NCL = ⟨ u1

(1,0,0) ,
v1

(1,0,0) ,
w1

(1,0,0) ⟩,
ANCL

1 = ⟨ u1

(1,0,0) ,
v1

(0,1,1) ,
w1

(0,1,1) ⟩, A
NCL
2 = ⟨ u1

(0,1,1) ,
v1

(1,0,0) ,
w1

(0,1,1) ⟩,
ANCL

3 = ⟨ u1

(0,1,1) ,
v1

(0,1,1) ,
w1

(1,0,0) ⟩, A
NCL
4 = ⟨ u1

(1,0,0) ,
v1

(1,0,0) ,
w1

(0,1,1) ⟩,
ANCL

5 = ⟨ u1

(1,0,0) ,
v1

(0,1,1) ,
w1

(1,0,0) ⟩ A
NCL
6 = ⟨ u1

(0,1,1) ,
v1

(1,0,0) ,
w1

(1,0,0) ⟩.
In this case the NCLTs are

τNCL
1 = {0NCL, 1NCL}, τNCL

2 = {0NCL, ANCL
1 , ANCL

6 , 1NCL},
τNCL
3 = {0NCL, ANCL

2 , ANCL
5 , 1NCL},

τNCL
4 = {0NCL, ANCL

3 , ANCL
4 , 1NCL},

τNCL
5 = {0NCL, ANCL

1 , ANCL
2 , ANCL

3 , ANCL
4 , ANCL

5 , ANCL
6 , 1NCL}.

This gives that the number of open sets in τNCL
1 is 2, in τNCL

2 , τNCL
3 , τNCL

4 is 4 = 22, and in τNCL
6 is

8 = 23. Therefore, for |X | = 2,
(a) there exist only NCLTs having 2n, n = 1, 2, 3 open sets.
(b) there exists 1 NCLT having 21-open set, 3 NCLT having 22-open sets and 1 NCLT having 23-open sets i.e.,
η21 = 1 = S(3, 1), η22 = 3 = S(3, 2) and η23 = 1 = S(3, 3) respectively.
Continuing in this way, it is seen that for |X | = n (finite), and
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M = {(0, 1, 1), (1, 0, 0)},
(i) there exist only NCLTs having 2n, n = 1, 2, 3, . . . , n open sets.
(ii) η21 = 1 = S(n, 1), η22 = S(n, 2), η23 = S(n, 3),· · · , η2n = S(n, n).
Hence, NNCL

X contains only NCLTs having 2k-open sets where k = 1, 2, 3, . . . , n. and number of NCLTs
having 2k-open sets is S(n, k), k = 1, 2, . . . , n.

Table 1: Number of NCLTSs on X

M = {(0, 1, 1), (1, 0, 0)} Number of NCLTSs having k-open sets
|X | k = 21 k = 22 k = 23 k = 24 . . . k = 2n

1 S(1, 1) - - - - -
2 S(2, 1) S(2, 2) - - -
3 S(3, 1) S(3, 2) S(3, 3) - - -
4 S(4, 1) S(4, 2) S(4, 3) S(4, 4) - -
...

...
...

...
...

...
...

n S(n, 1) S(n, 2) S(n, 3) S(n, 4) . . . S(n, n)

Proposition 3.12. Let X be a finite set with |X | = n and M = {(0, 1, 1), (1, 0, 0), (0.5, 0.5, 0.5)}. Then the
number of NCLTSs having 4-open sets is obtained by

tn = 0+3.20 +3.21 +3.22 +3.23 + . . .+3.2n−2 = 6.2n−2 − 3, where tn is the sum of first nth term
and t1 = 0.

Proof. For n = 1, we have t1 = 0 = 6.21−2 − 3.
Let X = {a} then |NX | = 31 = 3. So there is no NCLT having 4-open set.
Therefore, for n = 1 the result is true.
For n = 2, we have t2 = 0 + 3.20 = 3 = 6.22−2 − 3.
Let X = {u1, v1} then |NX | = 32 = 9. In this case NCLTs having 4-open sets are
τNCL
1 = {⟨ u1

(0,1,1) ,
v1

(0,1,1) ⟩,⟨
u1

(1,0,0) ,
v1

(1,0,0) ⟩,⟨
u1

(0,1,1) ,
v1

(0.5,0.5,0.5) ⟩,⟨
u1

(1,0,0) ,
v1

(0.5,0.5,0.5) ⟩},
τNCL
2 = {⟨ u1

(0,1,1) ,
v1

(0,1,1) ⟩,⟨
u1

(1,0,0) ,
v1

(1,0,0) ⟩,⟨
u1

(0.5,0.5,0.5) ,
v1

(0,1,1) ⟩,⟨
u1

(0.5,0.5,0.5) ,
v1

(1,0,0) ⟩},
τNCL
3 = {⟨ u1

(0,1,1) ,
v1

(0,1,1) ⟩,⟨
u1

(1,0,0) ,
v1

(1,0,0) ⟩,⟨
u1

(0,1,1) ,
v1

(1,0,0) ⟩,⟨
u1

(1,0,0) ,
v1

(0.1,1) ⟩}.
Let us consider, the result is true for n = k i.e., tk = 6.2k−2 − 3.
We now try to prove the result for n = k + 1.
Therefore, tn = tk+1 = tk + 3.2(k+1)−2

= 6.2k−2 − 3 + 3.2k−1

= 3.2k−2(2 + 2)− 3
= 3.4.2k−2 − 3
= 6.2k−1 − 3
= 6.2(k+1)−2 − 3.

Thus, for n = k + 1 the result is true. Hence, for all the natural number the result is true .

Table 2: Number of NCLTSs having 4-open sets on X

M = {(0, 1, 1), (0.5, 0.5, 0.5), (1, 0, 0)}
|X | 1 2 3 4 5 . . . n

Number of NCLT having
4-open sets 0 3 9 21 45 . . . 6.2n−2 − 3
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Figure 5: Representation of NCLTSs having 4-open sets on X

Proposition 3.13. Let X be a finite set, |X | = n and M = {(0, 1, 1), (1, 0, 0), (0.5, 0.5, 0.5)}. Then the
number of NCLTs having 5-open sets is obtained by

tn = 0 + 21 + 22 + 23 + . . .+ 2n−1 = 2n − 2, where tn is the sum of first nth term and t1 = 0.

Proof. For n = 1, we have t1 = 0 = 21 − 2.
Let X = {a} then |NX | = 31 = 3. So there is no NCLT having 4-open set.
Therefore, for n = 1 the result is true.
For n = 2, we have t2 = 21 = 2 = 22 − 2.
Let X = {u1, v1} then |NX | = 32 = 9. In this case NCLTs having 5-open sets are

τNCL
1 =

{
⟨ u1

(0,1,1) ,
v1

(0,1,1) ⟩, ⟨
u1

(1,0,0) ,
v1

(1,0,0) ⟩, ⟨
u1

(0,1,1) ,
v1

(0.5,0.5,0.5) ⟩,
⟨ u1

(1,0,0) ,
v1

(0.5,0.5,0.5) ⟩, ⟨
u1

(0.5,0.5,0.5) ,
v1

(0.5,0.5,0.5) ⟩

}
,

τNCL
2 =

{
⟨ u1

(0,1,1) ,
v1

(0,1,1) ⟩, ⟨
u1

(1,0,0) ,
v1

(1,0,0) ⟩, ⟨
u1

(0.5,0.5,0.5) ,
v1

(0,1,1) ⟩,
⟨ u1

(0.5,0.5,0.5) ,
v1

(1,0,0) ⟩, ⟨
u1

(0.5,0.5,0.5) ,
v1

(0.5,0.5,0.5)

}
.

Let us consider, the result is true for n = k i.e., tk = 2k − 2.
We now try to prove the result for n = k + 1.
Therefore, tn = tk+1 = tk + 2(k+1)−1 = 2k − 2 + 2k = 2.2k − 2 = 2k+1 − 2.
Hence, for n = k + 1 the result is true. So, for all the natural number the result is true.

Table 3: NCLTSs having 5-open sets on X

M = {(0, 1, 1), (1, 0, 0), (0.5, 0.5, 0.5)}
|X | 1 2 3 4 5 . . . n

Number of NCLT having 5-open sets 0 2 6 14 30 . . . 2n − 2

Figure 6: Representation of NCLTSs having 5-open sets on X
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Proposition 3.14. Let X be a finite set, |X | = n and M = {(0, 1, 1), (T, I, F ), (1, 0, 0)}, T = F ; I = 0.5.
Then the number of NCLTs having
(i) 4-open sets is obtained by

tn = 0 + 3.20 + 3.21 + 3.22 + 3.23 + . . .+ 3.2n−2 = 6.2n−2 − 3 and
(ii) 5-open sets is obtained by

tn = 0 + 21 + 22 + 23 + . . .+ 2n−1 = 2n − 2.

Proof. Prove is straightforward.

Proposition 3.15. For |X | = n(finite) and M = {(0, 1, 1), (1, 0, 0), (T, I, F ), (F, 1−I, T )}. Then the number
of NCLTSs having 4-open sets is obtained by

tn = 1 + 3.20 + 3.21 + 3.22 + . . .+ 3.2n−2 = 3.2n−1 − 2,
where tn is the sum of first nth term and t1 = 1.

Proof. For n = 1, we have t1 = 1 = 3.21−1 − 2.
Let X = {u1} then |NX | = 41 = 4. So there is one NCLT having 4-open set which is

{⟨ u1

(0,1,1) ⟩, ⟨
u1

(1,0,0) ⟩, ⟨
u1

(T,I,F ) ⟩, ⟨
u1

(F,1−I,T ) ⟩}.
Therefore, for n = 1 the result is true .
For n = 2, we have t2 = 1 + 3.20 = 4 = 3.21 − 2.
Let X = {u1, v1} and M = {(0, 1, 1), (1, 0, 0), (T, I, F ), (F, 1− I, T )}.
Then |NX | = 42 = 16. In this case NCLTs having 4-open sets are

τNCL
1 = {⟨ u1

(0,1,1) ,
v1

(0,1,1) ⟩, ⟨
u1

(1,0,0) ,
v1

(1,0,0) ⟩, ⟨
u1

(0,1,1) ,
v1

(T,I,F ) ⟩, ⟨
u1

(1,0,0) ,
v1

(F,1−I,T ) ⟩},
τNCL
2 = {⟨ u1

(0,1,1) ,
v1

(0,1,1) ⟩, ⟨
u1

(1,0,0) ,
v1

(1,0,0) ⟩, ⟨
u1

(T,I,F ) ,
v1

(T,I,F ) ⟩, ⟨
u1

(F,1−I,T ) ,
v1

(F,1−I,T ) ⟩},
τNCL
3 = {⟨ u1

(0,1,1) ,
v1

(0,1,1) ⟩, ⟨
u1

(1,0,0) ,
v1

(1,0,0) ⟩, ⟨
v1

(0,1,1) ,
v1

(1,0,0) ⟩, ⟨
u1

(1,0,0) ,
v1

(0,1,1) ⟩},
τNCL
4 = {⟨ u1

(0,1,1) ,
v1

(0,1,1) ⟩, ⟨
u1

(1,0,0) ,
v1

(1,0,0) ⟩, ⟨
u1

(T,I,F ) ,
v1

(0,1,1) ⟩, ⟨
u1

(F,1−I,T ) ,
v1

(1,0,0) ⟩}.
Let us consider, for n = k the result is true i.e., tk = 3.2k−1 − 2.
We now try to prove the result for n = k + 1.
Therefore,

tn = tk+1 = tk + 3.2(k+1)−2 = 3.2k−1 − 2 + 3.2k−1 = 2.3.2k−1 − 2 = 3.2k − 2 = 3.2(k+1)−1 − 2
Hence, for n = k + 1 the result is true. So, for all the natural number the result is true.

Table 4: Number of NCLTSs having 4-open sets on X

M = {(0, 1, 1), (1, 0, 0), (T, I, F ), (F, 1− I, T )}, I = 0.5
|X | 1 2 3 4 5 . . . n

Number of NCLT having 4-open sets 1 4 10 22 46 . . . 3.2n−1 − 2

Figure 7: Representation of NCLTSs having 4-open sets on X
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Remark 3.16. Results obtained for k = 4 and k = 5 are true for all M provided I = 0.5, T = F , and T < F ,
I < 0.5. Moreover, in this case, the results obtained for I = 0.5, T = F coincides with results obtained
for M = {(0, 1, 1), (1, 0, 0), (0.5, 0.5, 0.5)} and M = {(0, 1, 1), (1, 0, 0), (T, 0.5, F )}, T = F and the results
obtained for T < F and I < 0.5 coincides with results obtained for M = {(0, 1, 1), (1, 0, 0)}.

Proposition 3.17. For n ≥ m ≥ 2, the number of NCLTs having k-open set where mn −mn−2 < k < mn is
0.

4 Conclusion

In this paper, a number of formulae for finding the number of the NCLTSs are determined. Moreover, relevant
propositions are observed, where we can draw logical pictures.
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Abstract. In this paper, the number of neutrosophic topological spaces having two, three, and four open sets

are computed for a finite set XNT whose membership values lies in MNT . Further, the number of neutrosophic

bitopological spaces and neutrosophic tritopological spaces having k(k = 2, 3, 4) neutrosophic open sets on finite

sets are computed.
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—————————————————————————————————————————-

1. Introduction

Finding the number of topologies in a set is an interesting task. Many authors have done

their work in this field. Krishnamurty [1] obtained a sharper bound namely 2n(n−1) for the

number of distinct topologies. Sharp [2] shows that only discrete topology has cardinal greater

than 3
42

n and derived bounds for the cardinality of topologies which are connected, non-

connected, non-T0, and some more. After obtaining all non-homeomorphic topologies with n

points and > 7
162

n open sets, Stanley [3] also determined which of these are T0. The concept

of partial chain topologies supported Kamel [4] to formulate a special case for computing the

number of chain topologies and maximal elements with natural generalization. Ragnarsson et

al. [5], have also studied obtainable sizes of topologies on a finite set. Benoumhani [6] computed

the number of topologies having 2, 3, . . . , 12-open sets, and alsoT0 topologies having n+4, n+5,

and n+ 6 open sets. These results are extended in [7].

Later on, Benoumhani et al. [8] extended their work to fuzzy topological spaces (FTS).

They computed the number of FTS having 2, 3, 4, and 5-open sets and certain cases, where the

number of open sets is large. Basumatary et al. [9] discussed the number of fuzzy bitopological

spaces and gave some formulae.

Neutrosophic Sets and Systems, Vol. 53, 2023



After the generalization of the fuzzy set [10] from crisp set and intuitionistic fuzzy set [11],

Smarandache discovered the concept of the neutrosophic set by combining the fuzzy set and

intuitionistic fuzzy set. Since the introduction of the NS (Neutrosophic set) by Smarandache

[12], several authors have contributed their work in science and technology by taking NS

as a tool. Wang [13] studied single-valued NSs in multiset and multistructure. Salama et

al. [14] studied the neutrosophic topological spaces (NTS). Lupiáñez [15–18] investigated NTS.

Mwchahary et al. [19] studied neutrosophic bitopological space (NBTS). Devi et al. [20] and

Ozturk et al. [21] also discussed NBTS. Kelly [22] and Kovar [23] introduced the notion of

bitopological space and tritopological space respectively. The neutrosophic crisp tri-topological

spaces are studied by Al-Hamido et al. [24].

Ishtiaq et al. [25, 26] studied fixed-point results in orthogonal neutrosophic metric spaces

and also certain new aspects in fuzzy fixed-point theory. Ali et al. [27] discussed solving

nonlinear fractional differential equations for contractive and weakly compatible mappings in

neutrosophic metric spaces. Hussain et al. [28] worked on some new aspects of the intuitionistic

fuzzy and neutrosophic fixed point theory. Javed et al. [29] studied the fuzzy b-metric-like

spaces. Hussain et al. [30] studied the pentagonal controlled fuzzy metric spaces with an

application to dynamic market equilibrium.

From the literature survey, it is observed that generally finding the number of topologies

(NoTs) for a set is not an easy task. Because of this current authors started research work in

this area. This article discusses formulae for calculating the NNTSs (number of NTSs) with

2, 3, or 4-open sets, as well as the NNBTSs (number of NBTSs) and NNTRSs (number of

neutrosophic tritopological spaces) with the same number of open sets in topologies.

Let XNT be a non-empty finite set,MNT be the finite totally ordered set with |MNT | = m ≥ 2

and NT
X be a set that contains all the neutrosophic subsets (NSubs) of XNT with membership

values in MNT .

Note that in this paper TNT
X (n,m, k) denotes NNTSs on XNT with |XNT | = n and k-

open sets, (TNT
i ,TNT

j )NT
X (n,m, k) and (TNT

i ,TNT
j ,TNT

k )NT
X (n,m, k) denotes NNBTSs and

NNTRSs respectively on XNT consisting k-open sets in topologies at a time where n,m, k ∈ N,
n ≥ 1,m ≥ 2 and k ≥ 2.

2. Preliminaries

Definition 2.1. [14] On a universe of discourse XNT a NS UNT is defined as UNT =

⟨ u
(TNT

U (u),INT
U (u),FNT

U (u))
: u ∈ XNT ⟩, where TNT

U , INT
U , FNT

U : XNT →]−0, 1+[. Here −0 ≤
TNT
U (u)+INT

U (u)+FNT
U (u) ≤ 3+; TNT

U (u) represents degree of membership function, INT
U (u)

degree of indeterminacy and FNT
U (u) degree of non-membership function.
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Definition 2.2. [14,15] Let TNT ⊆ NNT
X then TNT is called a neutrosophic topology (NT)

on XNT if

• 0NT , 1NT ∈ TNT

• UNT
1 ∩ UNT

2 ∈ TNT for any UNT
1 ,UNT

2 ∈ TNT .

• ∪UNT
i ∈ TNT , for arbitrary family {UNT

i : i ∈ I} ∈ TNT .

The pair (XNT ,TNT ) is called NTS and any NS in TNT is called NOS (neutrosophic open

set) in XNT .

Definition 2.3. [19] Let TNT
1 and TNT

2 be the two NTs on XNT . Then (XNT ,TNT
1 ,TNT

2 )

is called a NBTS.

Example 2.4. If XNT = {u,v,w} and if TNT
1 = {0NT , 1NT ,UNT

1 } and TNT
2 =

{0NT , 1NT ,UNT
2 }, where

UNT
1 = ⟨ u

(0.7,0.1,0.5) ,
v

(0.5,0.2,0.3) ,
w

(0.3,0.4,0.4)⟩,U
NT
2 = ⟨ u

(0.2,0.5,0.1) ,
v

(0.1,0.2,0.3) ,
w

(0.6,0.3,0.5)⟩.
Then (XNT ,TNT

1 ) and (XNT ,TNT
2 ) form NTS. Therefore, (XNT ,TNT

1 ,TNT
2 ) is a NBTS.

Definition 2.5. [31] Let TNT
1 ,TNT

2 and TNT
3 be the three NTs on XNT . Then

(XNT ,TNT
1 ,TNT

2 ,TNT
3 ) is called a neutrosophic tritopological space (NTRS).

Example 2.6. If XNT = {u,v,w} and consider TNT
1 = {0NT , 1NT ,UNT

1 }, TNT
2 =

{0NT , 1NT ,UNT
2 } and TNT

3 = {0NT , 1NT ,UNT
3 }.

Here, UNT
1 = ⟨ u

(0.7,0.1,0.5) ,
v

(0.5,0.2,0.3) ,
w

(0.3,0.6,0.2)⟩, UNT
2 = ⟨ u

(0.6,0.5,0.3) ,
v

(0.7,0,0.2) ,
w

(0.8,0.1,0.1)⟩,
UNT
3 = ⟨ u

(0.5,0.2,0.3) ,
v

(0.2,0.1,0.2) ,
w

(0.1,0,0.1)⟩.
Then (XNT ,TNT

1 ), (XNT ,TNT
2 ) and (XNT ,TNT

3 ) form NTS.

Therefore (XNT ,TNT
1 ,TNT

2 ,TNT
3 ) is a NTRS. In this case, (XNT ,TNT

1 ,TNT
2 ,TNT

3 ) is a

NTRS having 3-NOS in each of the topologies.

3. Results on NNTS

Proposition 3.1. The NNTs (Number of Neutrosophic Topologies) on XNT , whose member-

ship values lies in MNT , is finite if and only if both XNT and MNT are finite.

Result 3.2. The NNTSs having 2-NOS is one i.e., TNT
X (n,m, 2) = 1.

The NT having 2-open set is the indiscrete NT which is TNT
1 = {0NT , 1NT }.

Result 3.3. The NNTs having 3-NOS is mn − 2 i.e., TNT
X (n,m, 3) = mn − 2.

These NTs necessarily consists of a chain containing 0NT , 1NT and any one NSub of XNT .

In this case NTs are in the chain, of the form 0NT ⊆ UNT
1 ⊆ 1NT ,UNT

1 is any NSub of XNT .
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Example 3.4. Let XNT = {u,v} and MNT = {(0, 1, 1), (0.6, 0.1, 0.2), (1, 0, 0)}. It is seen

that, |XNT | = n = 2, |MNT | = m = 3.

Then number of elements in NT
X i.e., |NT

X | = 32 = 9. These are

0NT , 1NT , UNT
1 = ⟨ u

(0,1,1) ,
v

(0.6,0.1,0.2)⟩, UNT
2 = ⟨ u

(0,1,1) ,
v

(1,0,0)⟩, UNT
3 = ⟨ u

(0.6,0.1,0.2) ,
v

(0,1,1)⟩,
UNT
4 ⟨ u

(0.6,0.1,0.2) ,
v

(0.6,0.1,0.2)⟩, UNT
5 = ⟨ u

(0.6,0.1,0.2) ,
v

(1,0,0)⟩, UNT
6 = ⟨ u

(1,0,0) ,
v

(0,1,1)⟩,
UNT
7 = ⟨ u

((1,0,0) ,
v

(0.6,0.1,0.2)⟩.
So, TNT

X (2, 3, 3) = 32 − 2 = 7.

The NTs having 3-open sets are:

TNT
1 = {0NT , 1NT ,UNT

1 }, TNT
2 = {0NT , 1NT ,UNT

2 }, TNT
3 = {0NT , 1NT ,UNT

3 },
TNT
4 = {0NT , 1NT ,UNT

4 }, TNT
5 = {0NT , 1NT ,UNT

5 }, TNT
6 = {0NT , 1NT ,UNT

6 },
TNT
7 = {0NT , 1NT ,UNT

7 }.

Result 3.5. An arbitrary NT with 4-NOSs is an NT consisting of 1NT , 0NT and other two

NSubs. These NSubs are either chain of 2-elements or anti-chain of 2-elements having 1NT

and 0NT as union and intersection respectively.

Theorem 3.6. In N̂T
X = NT

X − {0NT , 1NT }, the number of chains (NCs) of length 2 is

obtained by

c2(N
T
X ) =

(
m+1
2

)n − 3mn + 3.

Corollary 3.7. In NT
X , the NCs of length 4 having both 0NT and 1NT is same as c2(N

T
X ).

Lemma 3.8. In NT
X , the number of anti-chains (NACs) of size 2 (having 2-elements) with

1NT as union and 0NT as intersection is 2n−1 − 1.

Corollary 3.9. The NAC NTs of NT
X consisting of 4-open set is 2n−1 − 1.

Theorem 3.10. The NNTs in NT
X with 4-NOSss is

TNT
X (n,m, 4) =

(
m(m+1)

2

)n
− 3mn + 2n−1 + 2.

Follow Cor. 3.7 and Cor. 3.9 for the prove of theorem.

Example 3.11. Let, XNT = {u,v} and MNT = {(0, 1, 1), (0.1, 0.3, 0.8), (1, 0, 0)}. Therefore

|NT
X | = 32 = 9. These NSubs are

0NT = ⟨ u
(0,1,1) ,

v
(0,1,1)⟩, 1NT = ⟨ u

(1,0,0) ,
v

(1,0,0)⟩, UNT
1 = ⟨ u

(0,1,1) ,
v

(0.1,0.3,0.8)⟩,
UNT
2 = ⟨ u

(0,1,1) ,
v

(1,0,0)⟩, UNT
3 = ⟨ u

(0.1,0.3,0.8) ,
v

(0,1,1)⟩, UNT
4 = ⟨ u

(0.1,0.3,0.8) ,
v

(0.1,0.3,0.8)⟩,
UNT
5 = ⟨ u

(0.1,0.3,0.8) ,
v

(1,0,0)⟩, UNT
6 = ⟨ u

(1,0,0) ,
v

(0,1,1)⟩, UNT
7 = ⟨ u

(1,0,0) ,
v

(0.1,0.3,0.8)⟩.
In this case, n = 2, m = 3,

Therefore, TNT
X (2, 3, 4) =

(
3(3+1)

2

)2
− 3.32 + 22−1 + 2 = 62 − 23 = 13.

These NTs with 4-NOSs are

TNT
1 = {0NT , 1NT ,UNT

1 ,UNT
2 }, TNT

2 = {0NT , 1NT ,UNT
1 ,UNT

4 },
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TNT
3 = {0NT , 1NT ,UNT

1 ,UNT
5 }, TNT

4 = {0NT , 1NT ,UNT
1 ,UNT

7 },
TNT
5 = {0NT , 1NT ,UNT

2 ,UNT
5 }, TNT

6 = {0NT , 1NT ,UNT
2 ,UNT

6 },
TNT
7 = {0NT , 1NT ,UNT

3 ,UNT
4 }, TNT

8 = {0NT , 1NT ,UNT
3 ,UNT

5 },
TNT
9 = {0NT , 1NT ,UNT

3 ,UNT
6 }, TNT

10 = {0NT , 1NT ,UNT
3 ,UNT

7 },
TNT
11 = {0NT , 1NT ,UNT

4 ,UNT
5 }, TNT

12 = {0NT , 1NT ,UNT
4 ,UNT

7 },
TNT
13 = {0NT , 1NT ,UNT

6 ,UNT
7 }.

Here, the only anti-chain NTs in NT
X is TNT

6 with 0NT and 1NT as intersection and union

respectively.

4. Results on NNBTS

In this section, the NBTS having 3-NOSs in both NTs and the NBTS having 3-NOSs in both

NTs without repetition means NBTS of the form (XNT ,TNT
i ,TNT

j ), where TNT
i ,TNT

j are

identical or non-identical topologies, and non-identical topologies having 3-NOSs respectively.

A similar meaning is used for 4-NOSs.

Result 4.1. In NT
X , the NNBTS with two NOSs in both the NTs is

(TNT
i ,TNT

j )NT
X (n,m, 2) = 1.

From Result 3.2, TT
X (n,m, 2) = 1, which is the indiscrete topology TNT

1 = {0NT , 1NT }.
Hence, NBTS with 2-NOSs is only one i.e., (XNT ,TNT

1 ,TNT
1 ).

Result 4.2. In NT
X , the NNBTSs having 3-NOSs in both NTs is

(TNT
i ,TNT

j )NT
X (n,m, 3) =

(
TNT
X (n,m,3)+1

2

)
= m2n−3mn+2

2 .

Example 4.3. Example 3.4 gives TNT
X (2, 3, 3) = 7.

Therefore,(TNT
i ,TNT

j )NT
X (2, 3, 3) =

(
TNT
X (2,3,3)+1

2

)
= 28.

Then, these NBTSs are

(XNT ,TNT
1 ,TNT

1 ), (XNT ,TNT
1 ,TNT

2 ), (XNT ,TNT
1 ,TNT

3 ), (XNT ,TNT
1 ,TNT

4 ),

(XNT ,TNT
1 ,TNT

5 ), (XNT ,TNT
1 ,TNT

6 ), (XNT ,TNT
1 ,TNT

7 ),

(XNT ,TNT
2 ,TNT

2 ), (XNT ,TNT
2 ,TNT

3 ), (XNT ,TNT
2 ,TNT

4 ), (XNT ,TNT
2 ,TNT

5 ),

(XNT ,TNT
2 ,TNT

6 ), (XNT ,TNT
2 ,TNT

7 ),

(XNT ,TNT
3 ,TNT

3 ), (XNT ,TNT
3 ,TNT

4 ), (XNT ,TNT
3 ,TNT

5 ), (XNT ,TNT
3 ,TNT

6 ),

(XNT ,TNT
3 ,TNT

7 ),

(XNT ,TNT
4 ,TNT

4 ), (XNT ,TNT
4 ,TNT

5 ), (XNT ,TNT
4 ,TNT

6 ), (XNT ,TNT
4 ,TNT

7 ),

(XNT ,TNT
5 ,TNT

5 ), (XNT ,TNT
5 ,TNT

6 ), (XNT ,TNT
5 ,TNT

7 ),

(XNT ,TNT
6 ,TNT

6 ), (XNT ,TNT
6 ,TNT

7 ),

(XNT ,TNT
7 ,TNT

7 ).

Result 4.4. In NT
X , the NNBTSs having 3-NOSs in both NTs without repetition is
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(TNT
i ,TNT

j )NT
X (n,m, 3) =

(
TNT
X (n,m,3)

2

)
.

Example 4.5. Following Example 3.4 and Result 4.4., the number of NBTSs without repeti-

tion is

21 =
(
TNT
X (2,3,3)

2

)
=

(
7
2

)
.

Result 4.6. The NNBTSs in NT
X , consisting 4-NOSs in both the NT is

(TNT
i ,TNT

j )NT
X (n,m, 4) =

(
TNT
X (n,m,4)+1

2

)
.

Example 4.7. Let XNT = {u,v} and MNT = {(0, 1, 1), (0.1, 0.3, 0.8), (1, 0, 0)}.
Then, TNT

X (2, 3, 4) = 13.

and the NNBTSs is

(TNT
i ,TNT

j )NT
X (2, 3, 4) =

(
TNT
X (2,3,4)+1

2

)
= 91.

These NBTSs are

(XNT ,TNT
1 ,TNT

1 ), (XNT ,TNT
1 ,TNT

2 ), (XNT ,TNT
1 ,TNT

3 ), (XNT ,TNT
1 ,TNT

4 ),

(XNT ,TNT
1 ,TNT

5 ), (XNT ,TNT
1 ,TNT

6 ), (XNT ,TNT
1 ,TNT

7 ), (XNT ,TNT
1 ,TNT

8 ),

(XNT ,TNT
1 ,TNT

9 ), (XNT ,TNT
1 ,TNT

10 ), (XNT ,TNT
1 ,TNT

11 ), (XNT ,TNT
1 ,TNT

12 ),

(XNT ,TNT
1 ,TNT

13 ),

(XNT ,TNT
2 ,TNT

2 ), (XNT ,TNT
2 ,TNT

3 ), (XNT ,TNT
2 ,TNT

4 ), (XNT ,TNT
2 ,TNT

5 ),

(XNT ,TNT
2 ,TNT

6 ), (XNT ,TNT
2 ,TNT

7 ), (XNT ,TNT
2 ,TNT

8 ), (XNT ,TNT
2 ,TNT

9 ),

(XNT ,TNT
2 ,TNT

10 ), (XNT ,TNT
2 ,TNT

11 ), (XNT ,TNT
2 ,TNT

12 ), (XNT ,TNT
2 ,TNT

13 ),

(XNT ,TNT
3 ,TNT

3 ), (XNT ,TNT
3 ,TNT

4 ), (XNT ,TNT
3 ,TNT

5 ), (XNT ,TNT
3 ,TNT

6 ),

(XNT ,TNT
3 ,TNT

7 ), (XNT ,TNT
3 ,TNT

8 ), (XNT ,TNT
3 ,TNT

9 ), (XNT ,TNT
3 ,TNT

10 ),

(XNT ,TNT
3 ,TNT

11 ), (XNT ,TNT
3 ,TNT

12 ), (XNT ,TNT
3 ,TNT

13 ),

(XNT ,TNT
4 ,TNT

4 ), (XNT ,TNT
4 ,TNT

5 ), (XNT ,TNT
4 ,TNT

6 ), (XNT ,TNT
4 ,TNT

7 ),

(XNT ,TNT
4 ,TNT

8 ), (XNT ,TNT
4 ,TNT

9 ), (XNT ,TNT
4 ,TNT

10 ), (XNT ,TNT
4 ,TNT

11 ),

(XNT ,TNT
4 ,TNT

12 ), (XNT ,TNT
4 ,TNT

13 ),

(XNT ,TNT
5 ,TNT

5 ), (XNT ,TNT
5 ,TNT

6 ), (XNT ,TNT
5 ,TNT

7 ), (XNT ,TNT
5 ,TNT

8 ),

(XNT ,TNT
5 ,TNT

9 ), (XNT ,TNT
5 ,TNT

10 ), (XNT ,TNT
5 ,TNT

11 ), (XNT ,TNT
5 ,TNT

12 ),

(XNT ,TNT
5 ,TNT

13 ),

(XNT ,TNT
6 ,TNT

6 ), (XNT ,TNT
6 ,TNT

7 ), (XNT ,TNT
6 ,TNT

8 ), (XNT ,TNT
6 ,TNT

9 ),

(XNT ,TNT
6 ,TNT

10 ), (XNT ,TNT
6 ,TNT

11 ), (XNT ,TNT
6 ,TNT

12 ), (XNT ,TNT
6 ,TNT

13 ),

(XNT ,TNT
7 ,TNT

7 ), (XNT ,TNT
7 ,TNT

8 ), (XNT ,TNT
7 ,TNT

9 ), (XNT ,TNT
7 ,TNT

10 ),

(XNT ,TNT
7 ,TNT

11 ), (XNT ,TNT
7 ,TNT

12 ), (XNT ,TNT
7 ,TNT

13 ),

(XNT ,TNT
8 ,TNT

8 ), (XNT ,TNT
8 ,TNT

9 ), (XNT ,TNT
8 ,TNT

10 ), (XNT ,TNT
8 ,TNT

11 ),

(XNT ,TNT
8 ,TNT

12 ), (XNT ,TNT
8 ,TNT

13 ),

(XNT ,TNT
9 ,TNT

9 ), (XNT ,TNT
9 ,TNT

10 ), (XNT ,TNT
9 ,TNT

11 ), (XNT ,TNT
9 ,TNT

12 ),

(XNT ,TNT
9 ,TNT

13 ),
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(XNT ,TNT
10 ,TNT

10 ), (XNT ,TNT
10 ,TNT

11 ), (XNT ,TNT
10 ,TNT

12 ), (XNT ,TNT
10 ,TNT

13 ),

(XNT ,TNT
11 ,TNT

11 ), (XNT ,TNT
11 ,TNT

12 ), (XNT ,TNT
11 ,TNT

13 ),

(XNT ,TNT
12 ,TNT

12 ), (XNT ,TNT
12 ,TNT

13 ),

(XNT ,TNT
13 ,TNT

13 ).

Result 4.8. In NT
X , the NNBTSs having 4-NOSs in both NTs without repetition is

(TNT
i ,TNT

j )NT
X (n,m, 4) =

(
TNT
X (n,m,4)

2

)
.

Example 4.9. Following Example 3.11 and result 4.8, the number of NBTSs without repeti-

tion is 78 =
(
TNT
X (2,3,4)

2

)
=

(
13
2

)
.

5. Results on NNTRS

In this section, the NTRS having 3-NOS in three NTs and the NTRS having 3-NOS

in three NTs without repetition means NTRS of the form (XNT ,TNT
i ,TNT

j ,TNT
k ) where

TNT
i ,TNT

j ,TNT
k are identical or non-identical topologies and non-identical topologies having

3-NOS respectively. A similar meaning is used for 4-NOS.

Result 5.1. In NT
X the NNTRS consisting 2-NOSs in three NT is

(TNT
i ,TNT

j ,TNT
k )NT

X (n,m, 2) = 1.

In this case NT with 2-NOSs is the indiscrete one i.e., TNT
1 = {0NT , 1NT }. Therefore,

NNTRS with 2-NOSs is exactly one, namely (XNT ,TNT
1 ,TNT

1 ,TNT
1 ).

Result 5.2. The NNTRSs consisting 3-NOSs in all three NT in NT
X is

(TNT
i ,TNT

j ,TNT
k )NT

X (n,m, 3) =
(
TNT
X (n,m,3)+2

3

)
.

Example 5.3. Example 3.4 implies (TNT
X (2, 3, 3) = 7.

Therefore, (TNT
i ,TNT

j ,TNT
k )NT

X (2, 3, 3) =
(
TNT
X (2,3,3)+2

3

)
= 9×8×7

6 = 84.

Result 5.4. The NNTRSs consisting 3-NOSs in all three NT without repetition in NT
X is

(TNT
i ,TNT

j ,TNT
k )NT

X (n,m, 3) =
(
TNT
X (n,m,3)

3

)
.

Example 5.5. From Example 3.4, TNT
X (2, 3, 3) = 7. In this case, the NTRSs having 3-NOSs

in three NTs without repetition are

(XNT ,TNT
1 ,TNT

2 ,TNT
3 ), (XNT ,TNT

1 ,TNT
2 ,TNT

4 ), (XNT ,TNT
1 ,TNT

2 ,TNT
5 ),

(XNT ,TNT
1 ,TNT

2 ,TNT
6 ), (XNT ,TNT

1 ,TNT
2 ,TNT

7 ),

(XNT ,TNT
1 ,TNT

3 ,TNT
4 ), (XNT ,TNT

1 ,TNT
3 ,TNT

5 ), (XNT ,TNT
1 ,TNT

3 ,TNT
6 ),

(XNT ,TNT
1 ,TNT

3 ,TNT
7 ),

(XNT ,TNT
1 ,TNT

4 ,TNT
5 ), (XNT ,TNT

1 ,TNT
4 ,TNT

6 ), (XNT ,TNT
1 ,TNT

4 ,TNT
7 ),

(XNT ,TNT
1 ,TNT

5 ,TNT
6 ), (XNT ,TNT

1 ,TNT
5 ,TNT

7 ),

(XNT ,TNT
1 ,TNT

6 ,TNT
7 ),
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(XNT ,TNT
2 ,TNT

3 ,TNT
4 ), (XNT ,TNT

2 ,TNT
3 ,TNT

5 ), (XNT ,TNT
2 ,TNT

3 ,TNT
6 ),

(XNT ,TNT
2 ,TNT

3 ,TNT
7 ),

(XNT ,TNT
2 ,TNT

4 ,TNT
5 ), (XNT ,TNT

2 ,TNT
4 ,TNT

6 ), (XNT ,TNT
2 ,TNT

4 ,TNT
7 ),

(XNT ,TNT
2 ,TNT

5 ,TNT
6 ), (XNT ,TNT

2 ,TNT
5 ,TNT

7 ),

(XNT ,TNT
2 ,TNT

6 ,TNT
7 ),

(XNT ,TNT
3 ,TNT

4 ,TNT
5 ), (XNT ,TNT

3 ,TNT
4 ,TNT

6 ), (XNT ,TNT
3 ,TNT

4 ,TNT
7 ),

(XNT ,TNT
3 ,TNT

5 ,TNT
6 ), (XNT ,TNT

3 ,TNT
5 ,TNT

7 ),

(XNT ,TNT
3 ,TNT

6 ,TNT
7 ),

(XNT ,TNT
4 ,TNT

5 ,TNT
6 ), (XNT ,TNT

4 ,TNT
5 ,TNT

7 ),

(XNT ,TNT
4 ,TNT

6 ,TNT
7 ).

(XNT ,TNT
5 ,TNT

6 ,TNT
7 ).

Therefore, the NNTRSs consisting 3-NOSs in all three NTs without repetition is

(TNT
i ,TNT

j ,TNT
k )NT

X (2, 3, 3) = 35 =
(
TNT
X (2,3,3)

3

)
=

(
7
3

)
.

Result 5.6. (TNT
i ,TNT

j ,TNT
k )NT

X (n,m, 3) = mn

3 (TNT
i ,TNT

j )NT
X (n,m, 3).

Example 5.7. From Example 4.3 and 5.3, we have,

(TNT
i ,TNT

j )NT
X (2, 3, 3) = 28 and (TNT

i ,TNT
j ,TNT

k )NT
X (2, 3, 3) = 84.

Therefore 32

3 × (TNT
i ,TNT

j )NT
X (2, 3, 3) = 32

3 × 28 = 84 = (TNT
i ,TNT

j ,TNT
k )NT

X (2, 3, 3).

Result 5.8. In NT
X , the NNTRSs consisting 4-NOSs in three NTs is

(TNT
i ,TNT

j ,TNT
k )NT

X (n,m, 4) =
(
TNT
X (n,m,4)+2

3

)
.

Example 5.9. Example 3.11 implies,

TNT
X (2, 3, 4) = 13.

Then the NNTRS having 4-NOSs is

(TNT
i ,TNT

j ,TNT
k )NT

X (2, 3, 4) =
(
TNT
X (2,3,4)+2

3

)
= 13(13+1)(13+2)

6 = 455.

Result 5.10. The NNTRSs consisting 4-NOSs in all three NT without repetition in NT
X is

(TNT
i ,TNT

j ,TNT
k )NT

X (n,m, 4) =
(
TNT
X (n,m,4)

3

)
.

Example 5.11. From Example 3.11, TNT
X (2, 3, 4) = 13. Following Example 5.5

and result 5.10, the NNTRSs consisting 4-NOSs in all three NT without repetition is

(TNT
i ,TNT

j ,TNT
k )NT

X (2, 3, 4) = 286.

Result 5.12. (TNT
i ,TNT

j ,TNT
k )NT

X (n,m, 4) =
(TNT

X (n,m,4)+2)
3 (TNT

i ,TNT
j )NT

X (n,m, 4).

Example 5.13. From Examples 3.11, 4.7 and 5.9, we have

TNT
X (2, 3, 4) = 13, (TNT

i ,TNT
j )NT

X (2, 3, 4) = 91 and (TNT
i ,TNT

j ,TNT
k )NT

X (2, 3, 4) = 455.
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Therefore,

(TNT
X (2,3,4)+2)

3 (TNT
i ,TNT

j )NT
X (2, 3, 4) = 13+2

3 × 91 = 455 = (TNT
i ,TNT

j ,TNT
k )NT

X (2, 3, 4).

6. Effective of the proposed method

The formula for giving the number of topologies T (n) is still not obtained for a finite set

X having n elements. If n is small, then we can compute it by hand. But the difficulty

increases when n becomes large. Studying this particular area is also a highly valued part of

the topology, and this is one of the fascinating and challenging research areas. Note that the

explicit formula for finding the number of topologies is undetermined till now. This paper is

towards the formulae for finding the number of neutrosophic topological spaces having 2, 3, 4-

open sets, the number of neutrosophic bitopological spaces, and tritopological spaces having

the same number of open sets in topologies.

7. Conclusions

In this paper, the NNTSs consisting of small NOSs i.e., 2, 3, and 4-open sets are computed.

Moreover, the NNBTSs and NNTRSs are computed. It is also observed that formulae for

finding NNTSs, NNBTSs, and NNTRSs are interrelated. Hope this work will help in further

study of NNTSs with greater open sets. In the future, the NNBTSs having k, l-open sets and

the NNTRSs having k, l,m-open sets can be found where k ̸= l ̸= m. Moreover, we aim to

extend our work to study the existence of NNTSs in the topological group.
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