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Abstract

Let X be a finite set having n elements. The formula for giving the number of topologies 7'(n) is still not ob-
tained. If the number of elements n of a finite set is small, we can compute it by hand. However, the difficulty
of finding the number of the topology increases when n becomes large. A topology describes how elements of
a set are spatially related to each other, and the same set can have different topologies. Studying this particular
area is also a highly valued part of the topology, and this is one of the fascinating and challenging research
areas. Note that the explicit formula for finding the number of topologies is undetermined till now, and many
researchers are researching this particular area. This paper is towards the formulae for finding the number of
neutrosophic clopen topological spaces having two, three, four, and five open sets. In addition, some properties
related to formulae are determined.

Keywords: Combinatorics; Neutrosophic Set; Neutrosophic Clopen Topological Space; Number of Neutro-
sophic Clopen Topological Space

1 Introduction

The notion of the NS (neutrosophic set) was originally introduced by Smarandache! by the generalization of
fuzzy set?? and intuitionistic fuzzy sets (IFSs)2 Salama and Alblowi” introduced the concept of NTS (neu-
trosophic topological space) after Coker? introduced IFTS (intuitionistic fuzzy topological space). Nowadays,
several researchers have contributed to NS and NTS (2%%). Neutrosophic semi-open sets were introduced by
Ishwarya and Bageerathi® in NTS. Dhavaseelan and Jafari® introduced generalized Neutrosophic closed sets.
Later, Shanthi, Chandrasekar, and Safina!’ generalized semi-closed sets in NTS. Many authors (%) also

studied the notion of NSs and discussed various properties.

Recall thar a topology in which every open set is closed will be called a clopen topology (CLT). Many results
for finding the number of topologies (NoTs) have been developed by several researchers (,1514/ 151607 = Ay
thors in (181%21)) also studied FTS (fuzzy topological spaces) and computed some formulas for finding NoTs
and the number of FTS on a finite set. Recently, Francis, and Adenji? studied on clopen sets in topological
spaces (TS). In this paper we focus on number of neutrosophic clopen topologies (NCLTs) and related results.
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2 Preliminaries

In the following, X denotes a non-empty finite set of cardinality n, M is a totally ordered set of cardinality
m > 2, and let My be the collection of all neutrosophic subsets of X whose membership values lies in M.
Also, ONCL — (f7y 1o € &) and INCL — (G6oy 1 @ € &) are taken to denote neutrosophic empty set
and neutrosophic universal set respectively. The following definitions will be useful in the results. Moreover,
open set is used to mean neutrosophic open set (NOS) in this paper.

Definition 2.1. "' A NS AN" on a universe of discourse X is defined as AN = (717 12 € A)
where T, I, F : X —]0,17[. Note that ~0 < T'(z) + I(x) + F(z) < 3%; T(x),I(x) and F(z) represents
degree of membership function, degree of indeterminacy and degree of non-membership function respectively.
Definition 2.2. ' Let 7NV C Ny then 7V is called a NT (neutrosophic topology) on X' if

(1) ONC'L 1NCL c 7.NC’L

(i) ANCE N ANCE ¢ 7NCL for any ANCE ANCL ¢ NCL,

(iii) |y ANCL € 7NCL for arbitrary family {ANCL ;i € I} € 7NCOE,
The pair (X, 7VCL) is called NTS and any NS in 7V is called NOS in X

Definition 2.3. 19 The Stirling number of the second kind is the number of partitions of a finite set with n
elements into k blocks It is denoted by S(n, k) or .S,, 5, and its explicit formula is

S(n, k) = Snk = % Z] 0( ) (J)(k_J)n

3 Results

Definition 3.1. A NT 7V~ on a non-empty set X is said a NCLT if it consists of neutrosophic clopen sets,
i.e., if every its NOSs is closed too. The pair (X, 7VCF) is called neutrosophic clopen topological space
(NCLTS) and if 7VC~ contains k-open sets then (X', 7V¢L) is called NCLTS having k-open sets.

Example 3.2. Let ¥ = {u;,v;,w;} and consider the family 7Vl = {ONCL INCL - ANCL ANCLY

NCL _ V1 w NCL _ wi
Where 0 = (oD 0 oL oI 1 <(1oo) T00) (100)>
ANCL

ANCL

( X o) ( 5507
(0.2,0.5,0.3) (0.3,0.6,0.5) " (0,0.7,0.4) /° (0.3,0.5,0.2) (0.5,0.4,0,3) (0.4,0.3,0)/°

Then 7V¢L is a NCLT on X and so (X, 7V¢L) is a NCLTS on X.

Proposition 3.3. Arbitrary intersection of NCLTs on X is clopen.

Proof. Let
NNCL n NCL

TEA

where ) is an index set and 7V¢L € N )](V CL collection of all NCLTs on X. Clearly NNCE #£ () as
ONCL |NCL ¢ APNCL,

Let ANCL BNCL be any two members of NNCL Then
ANCL BNCL ¢ ANCL
— ANCL BNCL ¢ e
ANCL BNCL ¢ TN% Vi
— ANCL A BNCL ¢ 7_NCL and ANCL Uy BNCL ¢ £NCL Vi
— ANCL A BNCL ¢ nl 7NCL and ANCL U BNC’L € Mic » FNCL .y
— ANCL  BNCL ¢ \/] AL and ANCL |y BNCL ¢ \/NCL
Therefore VY% is a NT on X.
Let ANCL be any element of N VL, then
ANCL ¢ \PNCL —y ANCL ¢ N )\TZ_NCL
. ANCL ¢ 7NCE Vi
= C(ANCL) g £NCL Vi
— C(ANCH) € (), 7N,
= C(ANCL) ¢ NNCL
Since ANCL is arbitrary element of NVCL and C(ANCL) € NVCL implies that every element of N VL is
NCLS. Hence arbitrary intersection of NCLTs is clopen. O
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Remark 3.4. Union of NCLTs on X is not clopen.
Illustration: Let X = {uy,v;} and M = {(0,1,1),(0.5,0.5,0.5),(1,0,0)}. Then number of elements in
N, ie.,|Ny| = 3% = 9. These are
NCL _ u v NCL _ u NCL _
0 <(o111) (0111)> 1 = (moo mom ) A1
NCL _
=(@win moo ) 45 = (50508 01D/
1 NCL 151 )1
<050005 w0505 )0 A = (Gsok0s To0)
NCL uy NCL _ | _w
A " = (mom (011)>A = (mo0) 50509 )"
Heren =2, m = 3,50 Jny (2,3,3) =32 —2=9-2=7.
In this case
FNCL _ [gNCL {NCL ANCLY anq
T Ol = {ONCE INCL ANCL ANCL ANCL ANCLY are NCLTs on X.

But VLU rNOE = (QNCL |NCL ANCL ANCL ANCL ANCL ANCLY jsnot a NCLT on X as AYCLN
ANCL — ANCL g oNCL |y NCL
6 3 1 2

<(o11) (050505)>

Proposition 3.5. Union of two NCLTs is again a NCLT if one is contained in the other.

Proof. Let ANCL and BNCL be two NCLTs on X. Let ANCL C BNCL then ANCL y BNCL = BNCL,
which is a NCLT on X. Similarly, if BNCL C ANCL then ANCL y BNCL — ANCL which is a NCLT on
X. This shows that union of two NCLTs is again a NCLT if one is contained in the other. O

Number of Neutrosophic clopen topology having 2-open Sets:
1. If X = {uy} or |[X| = 1 whose neutrosophic values lies in M.
CaseI: If M = {(0,1,1),(1,0,0)}.
Then, [Nx| = 2! = 2. These are
O = (i) V" = (il )
In this case we will get only one NT which is 7{¥¢L = {0V¢L 1NCL} This NT is also NCLT.
Case II: If M = {(0,1,1),(0.5,0.5,0.5), (1,0, 0)}

Then, |Nx| = 3" = 3. These are
ONCL [NCL ANCL _

{waobom)

In this case also we will get only one NT having 2-open set which is 7¥¢Z = {0NCL 1VCL) and hence a
NCLT.

Case III: If M = {(0,1,1),(T,I,F),(F,1-1,T7),(1,0,0)};T,1,F € [0,1]

In this case, |NVx| = 4! = 4. These are

ONCL 1NCL ANCL <(Tu11F)> AN CL <(F1 IT)>

In this case also we will get only one NT having 2-open set which is 7{V¢% = {0NCL 1NCL1 and therefore a
NCLT.

DNCL 1NCL

Figure 1: NCLT having 2-open sets

2. If X = {uq,v1} or |X| = 2 whose neutrosophic values lies in M.
CaseI: If M = {(0,1,1),(1,0,0)}

Then, [Ny| =22 =4. These are

ONCL 1N CL < Uy 1} >7

(1,0,0)” (1,0,0)
NC
<(o1 1) (100)7‘4
In this case, NCLT having 2-open set is one i.e., T

Case II: If M = {(0,1,1), (0.5,0.5,0.5), (1,0, 0)}

Then, |Nx| = 3% = 9. These are
ONCL [NCL ANCL _

(@1 )
ver (0,1,1)’ (0,1,1) 1 )/
A <(100) (011)>

NCL — [gNCL |NCLY,

NCL __ u v
<(0 1,1)° (050 5 05)> Az = <(1,01,0)’ (0,11,1)>7

NCL _ uy NCL _ v
A; <(0.5,0.5,0.5) (01 1)> Aj <(o.5,0.5,0.5) (0.5,0.%,0.5)>7
ANCL <(0 5, (1JL5 0.5) (1130 ); ANCL <(11610) (071,1)>7
Aé\[CL = <(1361,o) (050505 >
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In this case also NCLT having 2-open set is one i.e., 7{'¢F = {oNCL 1NCLY,
Case IIL: If M = {(0,1,1), (T, I, F), (F,1 — I, T),(1,0,0):; T, I, F € [0, 1]
In this case, |Nx| = 4% = 16. These are

ONCL {NCL ANCL _ <(011) (TvIlF)> ANC‘L,<(Ou111) (100)>
AT = (i min ) AV = (Tt wre )
At = <(TuIlF (1%10)>7 AFt = <(1uTl) (0,1]171)>
AéVCL:QwO) TIE ) AéVCL:Qo“f) FITT )
AéVCL:<(TIF m> A%CL:QRﬁi]T) 011>7
ANt ={ F1 IT) (Fi- IT)> ARt = <W (100 >7
Apct <m (TIF)> ANCE = <(100) ) (Fi- IT)>

In this case also NCLT having 2-open set is one i.e., 7{' €% = {ONCL 1NCLY,

Proposition 3.6. For |X| = n,|M| = m, M is the any set of neutrosophic values containing (1,0,0) and
(0,1, 1), then number of NCLT having 2-open sets is one.

Proof. The NT having 2-open sets is indiscrete NT only i.e., 7Nl = {0NCL 1NCL1 This NT is NCLT
as 0NVCL and 1VCL are complements of each other. Therefore, the number of NCLTS having 2-open sets is
one. O

Number of Neutrosophic clopen topology having 3-open Sets:

1. If X = {p} or |X| = 1 whose neutrosophic values lies in M.

Case I: If M = {(0,1,1),(1,0,0)}

In this case, |NVx| = 21 = 2. We will get only one NCLT which is

NCL = {ONCL 1NCLY and so no NCLT having 3-open sets. Therefore, the number of NCLT having 3-open
sets is zero.

Case II: If M = {(0,1,1),(0.5,0.5,0.5), (1,0,0)}

In this case, | Vx| = 3! = 3, we will get only one NCLT having 3-open sets, which is

TNCL = [QNCL ANCL {NCLY a5 complement of ANCE je., C(ANCL) = ANCL, Therefore, the number
of NCLT having 3-open sets is one.

Case III: If M = {(0,1,1),(T,1I,F),(F,1—-1,T7),(1,0,0)};T,I,F € [0,1]

In this case, [Ny| = 4! = 4. We will get no NT having 3-open sets. Therefore, the number of NCLT having
3-open sets is zero.

DNCL

AJIJCL — C(AJ;-JCL)

]_NCL

Figure 2: NCLT having 3-open sets

2.If X = {p, q} or |X| = 2 whose neutrosophic values lies in M.

CaseI: If M = {(0,1,1), (1,0,0)}

In this case, |./\/ x| = 22 = 4. We will get no NCLT having 3-open sets. Therefore, the number of NCLT
having 3-open sets is zero.

Case II: If M = {(0,1,1),(0.5,0.5,0.5),(1,0,0)}

Then, |Nx| = 3% = 9. We will get only one NT having 3-open sets, which is 7V L = {ONCE ANCL (NCLY
Therefore, the number of NCLT having 3-open sets is one.

Case III: If M = {(0,1,1),(T,I,F),(F,1—1,T),(1,0,0)}, where T, I, F € [0, 1]

In this case, [Ny | = 42 = 16. We will get no NT having 3-open sets. Therefore, the number of NCLT having
3-open sets is zero.
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Proposition 3.7. For |X| = n, the number of NCLT having 3-open sets is always one for M containing
(0,1,1),(1,0,0) and (T,0.5,F), T = F;T,F € [0,1], and zero for M that does not include neutrosophic
values which are complement to each other i.e., (T,0.5, F), T = F;T,F € [0, 1].

Proof. Let, M be the set containing (0,1,1),(1,0,0),(7,0.5,F),T = F;T,F € [0, 1], and other neutro-
sophic values.

Case 1: Let |X| = 1,say X = {a}

In this case the NCLT having 3-open sets is {0V%, A% 1N} where AY“F = ((75% )

Case II: Let |X| = 2, say X = {a, b}

In this case the NCLT having 3-open sets is {0V L 1NCE ANCLY "where AYCL = (
Case III: Let |X| = 3,say X = {a,b,c}

In this case the NCLT having 3-open sets is {0V L 1NCL ANCLY where AYCL = (
Case IV: Let | X'| = n(finite), say X = {a1,a2,as3,...,an}

In this case the NCLT having 3-open sets is {0V ¢ 1VCE ANCLY "where
AnNCL

a b
(T,0.5,F)° (T,045,F)>'

a b c >
(1,0.5,F)’ (T,0.5,F)’ (T,0.5,F) /"

(TOEF) oS F) TS F) TOsF) )

It is seen that there exists only one NCLT having 3-open sets. This NCLT contains 0V¢%, 1NCE and ANCE,
Note that, in AYCF every member of X' has neutrosophic membership value as (7,0.5, F),T = F;T,F €
[0, 1], whose complement is itself i.e., ANCL = C(ANCL),

On the other hand, if M does not contain (7',0.5, F'),T = F; T, F € [0, 1], then there exist no neutrosophic
subset of X of the form ANCL, such that ANCL £ C(ANCL). Hence there exists no NCLT having 3-open
sets. O

Number of Neutrosophic clopen topology having 4-open Sets:

1. If X = {p} or |X| = 1 whose neutrosophic values lies in M.

CaseI: If M = {(0,1,1),(1,0,0)}

In this case, there exists no NCLT having 4-open sets. Therefore, the number of NCLT having 4-open sets is
Zero.

CaseII: If M = {(0,1,1),(0.5,0.5,0.5), (1,0,0)}

In this case, [Nx| = 3' = 3, we will get no NT having 4-open set. Therefore, the number of NCLT having
4-open sets is zero.

Case III: If M = {(0,1,1),(T,I,F),(F,1-1,T7),(1,0,0)};T,I,F €[0,1].

In this case, [Ny| = 4! = 4. We will get one NCLT having 4-open set. Therefore, the number of NCLT
having 4-open sets is one.

2. If X = {p, ¢} or |X| = 2 whose neutrosophic values lies in M.

CaseI: If M = {(0,1,1),(1,0,0)}

In this case, [Nx| = 22 = 4, we will get one NCLT having 4-open sets. Therefore, the number of NCLT
having 4-open sets is one i.e., 7{V¢F = {ONCL ANCL ANCL 1NCLY

CaseII: If M = {(0,1,1),(0.5,0.5,0.5), (1,0,0)}

In this case, |[NVx| = 32 = 9. We will get three NCLTs having 4-open set. These are

NCL _ {a\NCL ANCL ANCL {NCL NCL _ a\NCL ANCL ANCL {NCL
T ={0 JAY R AR 1, Ta ={0 JAF R AR 1,
7NCL — fQNCL ANCL ANCL |NCL}

Therefore, the number of NCLTs having 4-open sets is three.
Case III: If M = {(0,1,1),(T,I,F),(F,1—-1,T),(1,0,0)};T,I,F €[0,1].
In this case, |NVx| = 42 = 16. We will get four NCLT having 4-open sets. These are

7_1]VCL — {ONCL,A{VCL,A{\QCL, 1NCL}’ TQ]VCL — {ONCL,AiVCL,A]l\gCL, 1NCL},
NCL _ NCL NCL NCL {1{NCL NCL _ NCL NCL NCL 1NCL
T3 = {0 714.2 ,A6 3 1 }, T4 = {0 ,Ag 7A12 ) 1 }.
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INCL
| 1veL
Aj_\'CL = c(adery / \
Al Al =c(A'h)
ANcL
i oNCL
ONCL

Figure 3: NCLT having 4-open sets

Number of Neutrosophic clopen topology having 5-open Sets:

1. If X = {p} or |X¥| = 1 whose neutrosophic values lies in M.

CaseI: If M = {(0,1,1),(1,0,0)}

In this case, |[Ny| = 2! = 2, we will get only one NT which is 7{V¢F = {0NCE 1NCLY and so, there exists
no NCLT having 5-open sets. Therefore, the number of NCLT having 5-open sets is zero.

CaseII: If M = {(0,1,1),(0.5,0.5,0.5), (1,0,0)}

In this case, |NVx| = 3! = 3, we will get only two NCLTs having 2 and 3-open sets. Therefore, the number of
NCLTs having 5-open sets is zero.

Case III: If M = {(0,1,1),(T,I,F),(F,1-1,T7),(1,0,0)};T,1,F € [0,1]

In this case, [Nx| = 4! = 4. We will get no NT having 5-open sets. Therefore, the number of NCLT having
5-open sets is zero.

ONCL

NCL
4y

AL = C(Ar)

AL = cayen)

1NCL

Figure 4: NCLT having 5-open sets

2. If X = {p, q} or |X| = 2 whose neutrosophic values lies in M.
CaseI: If M = {(0,1,1),(1,0,0)}
In this case, [Ny| = 22 = 4, we will get no NCLT having 5-open sets. Therefore, the number of NCLT having
5-open sets is zero.
Case II: If M = {(0,1,1),(0.5,0.5,0.5),(1,0,0)}
Then |[Ny| = 32 = 9. We will get two NCLTs having 5-open sets. These are
FNCL — [QNCL ANCL ANCL ANCL gNCL} =  NCL _ (gNCL ANCL ANCL ANCL oNCL}
Therefore, the number of NCLTs having 5-open sets is two.
Case III: If M = {(0,1,1),(T,1I,F),(F,1—-1,T7),(1,0,0)}; 7,1, F € [0,1]
In this case, |[Nx| = 42 = 16. We will get no NCLT having 5-open sets. Therefore, the number of NCLT
having 5-open sets is zero.

Proposition 3.8. For | X| = n,|M| = m, M is the any finite set of neutrosophic values containing (1,0,0), (0,1,1)
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and other neutrosophic values which are complement to each other, then number of NCLTs having m™-open
sets is one and for any other M it is zero.

Proof. In this case, the NT having m™-open sets is discrete NT. This NCLT is also clopen as it contains all
neutrosophic subsets and complement of each subset is also in that NT. Therefore, the number of NCLTS
having m™-open sets is one.

Further, it is found that any other M, with |M| = m > 2, is equivalent to M = {(1,0,0), (0,1,1)} for NCLT.
But for M = {(1,0,0),(0,1,1)}, the maximum number of open sets in NCLT is 2". Since m™ > 2", the
number of NCLTS having m™-open sets is zero. O

Corollary 3.9. The minimum number of NOSs in a NCLT is 2 and the maximum number of NOSs in a NCLT
is m", where n is the number of elements in X and m is the number of elements in M.

Proof. This result is obtained by using Proposition 3.8] O

Proposition 3.10. For |[X| =n, M = {(0,1,1),(T,I,F),(F,1—1,T7),(1,0,0)}, where T #+ F;T,I,F €
[0, 1], then the number of NCLTS having odd number of open sets is always zero.

Proposition 3.11. For |X| = n, M = {(1,0,0),(0,1,1)} and NY L be the set of all NCLTSs on X whose
membership values lies in M then

(i) Nf(VCL contains only NCLTs having 2*-open sets where k = 1,2,3,...,n

(ii) Number of NCLTs having 2F-open sets is S(n, k), k =1,2,...,n

Proof. Let, |X| =n, M ={(1,0,0), (0,1, 1)} and 1, be the number of NCLTSs having k-open sets.

CaseI: If |X| = 1 say, = {u1} whose neutrosophic values lies in M. Then [Nx| = 2! = 2. These are
ONCL — < > 1NC’L < U1 >
0,11/ (1,0,0)

In this case we will get only one NCLT which is the indiscrete NT i.e., 7L = {0NCE 1NCLY This shows
that for | X| = 1,

(a) there exists only NCLT having 2", n = 1 open sets.

(b) there exists 1 NCLT having 2! open sets i.e., ny1 = S(1,1).

CaseIL: If | X'| = 2 say, = {uy,v;} whose neutrosophic values lies in M. Then [Nx| = 22 = 4. These are

ONCL < _ v > 1N CL < v >

.10 (0,10 T.00)’ o)/
NCL _ NCL _
AT =iy mem A2 T = (@owy A )

These NCLTs are

FNCL — [gNCL |NCLY  NCL _ [((NCL ANCL ANCL {NCL}
This gives that the number of open sets in 7{¥“” is 2 and in TN CL s 4 = 22 Therefore, for | X| = 2,
(a) there exist only NCLTs having 2", n = 1,2 open sets i.e., 7i'¢% and 7V CL.

(b) there exists 1 NCLT having 2'-open set and 1 NCLT havmg 22_open sets i.e., 731 = 1 = S(2,1) and
N2 = 1 = S(2,2) respectively.
Case IIL: If |X| = 3 say, X = {uy,v1,w;} whose neutrosophic values lies in M. Then [Ny| = 2% = 8.

These are
ONC'

= (@1 LT (ov111) 01, 1)> 1NCL (oo ooy Too )
ANC <

ANC

V1 w1
a, 0, 0)° (0 1 1) (0 1, 1) <(0,1,1) (1,0,0)° (0,171)>’

), A

<(0 1,1)° (o 1 i (1 0 o)> <(11610)’ (1,7101,0)7 (0?111,1)>’

ANCL < U > < Uy v w1y >
(1,0,0)° (0,1,1) 10 ,0) (0,1,1)° (1,0,0)’ (1,0,0)/"

In this case the NCLTs are

NCL _ faNCL {NCL\ ..NCL _ faNCL ANCL ANCL 1NCL
T ={0 1 } ={0 JAY R AT 1,

7NCL _ {QNCL_gNCL sNCL |NCL}
7NCL _ {QNCL_gNCL sNCL {NCLY
7_5N — {oNOL, ANCL ANCL ANCL ANCL ANCL ANCL |NCLY}
This gives that the number of open sets in TNCL is 2, in TNCL TngCL NOL is 4 = 22, and in 7VOT is

8 = 23. Therefore, for |X| = 2,

(a) there exist only NCLTs having 2", n = 1, 2, 3 open sets.

(b) there exists 1 NCLT having 2!-open set, 3 NCLT having 22-open sets and 1 NCLT having 23-open sets i.e.,
Mo =1=5(3,1),m2 =3 =5(3,2) and 193 = 1 = 5(3, 3) respectively.

Continuing in this way, it is seen that for | X'| = n (finite), and
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M ={(0,1,1),(1,0,0)},

(i) there exist only NCLTs having 2", n = 1,2,3,...,n open sets.

(i) nor =1 =5(n,1),n2 = S(n,2), s = S(n,3), - ,m2n = S(n,n).

Hence, N A]fv CL contains only NCLTs having 2*-open sets where k¥ = 1,2,3,...,n. and number of NCLTs
having 2*-open sets is S(n, k), k =1,2,...,n. O

Table 1: Number of NCLTSs on X

M ={(0,1,1),(1,0,0)} Number of NCLTSs having k-open sets

|X] k=21 k=22 k=28 k=21 ... k=2"
1 SL1) - - - - -

2 S2.1) S22 - i ]

3 S(3,1) S(3.2) S$3,3) - - -

4 S(4,1) S(4.2) S@43) S44) - -

n S(n,1) S(n,2) S(n,3) S(4) ... S(nn)

Proposition 3.12. Let X be a finite set with |X| = n and M = {(0,1,1),(1,0,0),(0.5,0.5,0.5)}. Then the
number of NCLTSs having 4-open sets is obtained by

tp =0+3.20 43214322 +3.23 ... +3.2"2 = 6.2""2 — 3, where t,, is the sum of first n** term
andt; = 0.

Proof. Forn =1, wehavet; =0 = 6.2!72 — 3.

Let X = {a} then [Nx| = 3! = 3. So there is no NCLT having 4-open set.
Therefore, for n = 1 the result is true.

Forn = 2, we have to = 0+ 3.20 =3 =6.2272 — 3.

Let X = {uy, v} then [Ny| = 32 = 9. In this case NCLTs having 4-open sets are

NCL _ u v u v u v U v

Ti = {<(o,11,1)’ (0,11,1)>’<(1,01,0)7 (1,01,0)>’<(0.,11,1)’ (0.5,0.15,0.5)> <(1 010) 05 015,0.5)>}’
NCL _ uy 1 1 u )

n =@ty win)h @ <1i)1,0)>’<(0.5,0.3,0.o> i) <(0 50.508) 100/}
TN (M TR A R SUE T

3 oy @in N mos mowm @iy won{woe @i

Let us consider, the result is true for n = k i.e., t;, = 6.2F=2 — 3.
We now try to prove the result forn = k + 1.
Therefore, t, = tp11 = tj, + 3.20kF1)—2
=622 343201
=322242)-3
=34.2F2_3
=621-3
=6.20+1)-2 _3
Thus, for n = k + 1 the result is true. Hence, for all the natural number the result is true .

Table 2: Number of NCLTSs having 4-open sets on X

M ={(0,1,1),(0.5,0.5,0.5), (1,0,0)}

Ed T 2 3 4 5 .. n
Number of NCLT having
4-open sets 0 3 9 21 45 ... 62"2-3
hitps://doi.org/10.54216/1JNS. 180418 199
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AN -
A >

Figure 5: Representation of NCLTSs having 4-open sets on X

O

Proposition 3.13. Let X be a finite set, |X| = n and M = {(0,1,1),(1,0,0),(0.5,0.5,0.5)}. Then the
number of NCLTs having 5-open sets is obtained by
tn=0+21 422423 4 4271 =97 _ 2 wheret, is the sum of first nt term and t; = 0.

Proof. Forn =1, wehavet; =0 = 2! — 2.

Let X = {a} then [Ny | = 3' = 3. So there is no NCLT having 4-open set.
Therefore, for n = 1 the result is true.

Forn = 2, we have t5 = 21 =2 =22 — 2,

Let X = {uy,v1} then |Nx| = 3% = 9. In this case NCLTs having 5-open sets are

< Uq U1 > < U7 V1 > < U1 U1 >

~vor _ )\ 0102\ @000 10,0/ \(0,1,1) 7 (05,0.5,05)

Tl - U1 V1 > < Ul V1 )
(1,0,0)’ (0.5,0.5,0.5)/2 \70.5,0.5,0.5) * (0.5,0.5,0.5)

< Uy 1 > < Uy 1
(0.5,0.5,0.5)* (1,0,0) /7 \(0.5,0.5,0.5)” (0.5,0.5,0.5)

Let us consider, the result is true for n = k i.e., t, = 2F — 2.

We now try to prove the result forn = k + 1.

Therefore, t,, = tpy1 =t + 20t "1 =2k _ 9 4 ok — 99k _ 9 — gk+1 _ 9

Hence, for n = k + 1 the result is true. So, for all the natural number the result is true. O

ver _ ) oy oin) (mooy: mow) (@50 508 01D
Ty = v v .

Table 3: NCLTSs having 5-open sets on X

M ={(0,1,1),(1,0,0), (0.5,0.5,0.5)}
|X] 1 2 3 4 5 ... n
Number of NCLT having 5-opensets 0 2 6 14 30 ... 2" — 2

Figure 6: Representation of NCLTSs having 5-open sets on X
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Proposition 3.14. Let X be a finite set, |X| = nand M = {(0,1,1),(T,1,F),(1,0,0)},T = F;I = 0.5.
Then the number of NCLTs having
(i) 4-open sets is obtained by
tn =0+3204+32+3224323+...432"2=62"2—-3and
(ii) 5-open sets is obtained by
tn=0+2"4+22428 4  42nl=2"_2

Proof. Prove is straightforward. O

Proposition 3.15. For |X| = n(finite) and M = {(0,1,1),(1,0,0), (T, I, F), (F,1—1I,T)}. Then the number
of NCLTSs having 4-open sets is obtained by

tp =14+32°4321 43224+ .. 4327 2=32""1_9
where t,, is the sum of first n*" term and t1 =1

Proof. Forn =1,wehavet; =1 = 3.2t 9

Let X = {u;} then [Nx| = 4! = 4. So there is one NCLT having 4-open set which is
Uwin) (wow ) (adm ) (2 -

Therefore, for n = 1 the result is true .

Forn =2, wehavet, =1+320=4=32"-2.

Let X = {us, v} and M = {(0,1,1),(1,0,0), (T, I, F), (F,1 — I,T)}.

Then [Ny | =42 = 16. In this case NCLTs having 4-open sets are

c u v u v u v
7—1]V b= {< (0,11,1) (0, 1 1) > < 1 O 0) (1, 010)> <(O 111) (T,Il,F) >7 <(1,01,O)’ (F,le,T)>}’
7.NC’L _ {< U > < > < vl > < Uy vl >}
2 (0,1,1)° 071,1 ’ 100 (100 ’ (TIF (T,1,F)/> \(F1-1,T) (F,1-1,T)/J>
T - {<(01 1) (0 > <(100) (100)>’< 1) (100)> <(1?l01,0)’ (O,vll,l)>}’
CcL u v
Tt = {< 0,1,1) (0,1,1)> <(1,0 0)’ (1, 0 0) ), <(TI F) (0.,1,1)>7 <(F,1jI,T)’ (1,01,0)>}'

Let us consider, for n = k the result is true i.e., t; = 3.2 _1 — 2.
We now try to prove the result forn = k + 1.

Therefore,

by = tpgr =t +3.20H)=2 =3 9k=1 _9 4 39k=1 — 93 9k=1 _9_ 39k _9—390k+t)-1_9
Hence, for n = k + 1 the result is true. So, for all the natural number the result is true. O

Table 4: Number of NCLTSs having 4-open sets on X’
M = {(Ovlvl)a (17070)3(T,17F),(F71 _IvT)}vl =0.5
X I 2 3 4 5 .. n
Number of NCLT having 4-opensets 1 4 10 22 46 ... 3.27" 12
e
Figure 7: Representation of NCLTSs having 4-open sets on X’
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Remark 3.16. Results obtained for £ = 4 and k = 5 are true for all M provided I = 0.5,7 = F,andT < F,
I < 0.5. Moreover, in this case, the results obtained for I/ = 0.5, T" = F' coincides with results obtained
for M = {(0,1,1),(1,0,0),(0.5,0.5,0.5)} and M = {(0,1,1),(1,0,0),(7,0.5, F)},T = F and the results
obtained for T < F and I < 0.5 coincides with results obtained for M = {(0,1,1), (1,0,0)}.

Proposition 3.17. For n > m > 2, the number of NCLTs having k-open set where m™ —m"~2 < k < m™ is
0.

4 Conclusion

In this paper, a number of formulae for finding the number of the NCLTSs are determined. Moreover, relevant
propositions are observed, where we can draw logical pictures.
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Abstract. In this paper, the number of neutrosophic topological spaces having two, three, and four open sets
are computed for a finite set XNT whose membership values lies in MY T, Further, the number of neutrosophic
bitopological spaces and neutrosophic tritopological spaces having £(t = 2, 3, 4) neutrosophic open sets on finite

sets are computed.

Keywords: : Neutrosophic Set; Neutrosophic Topology; Two Open Set; Three Open Set; Four Open Set.

1. Introduction

Finding the number of topologies in a set is an interesting task. Many authors have done
their work in this field. Krishnamurty [1] obtained a sharper bound namely 2""=1 for the
number of distinct topologies. Sharp [2] shows that only discrete topology has cardinal greater
than %2" and derived bounds for the cardinality of topologies which are connected, non-
connected, non-Jj, and some more. After obtaining all non-homeomorphic topologies with n
points and > 1—762“ open sets, Stanley [3] also determined which of these are 5. The concept
of partial chain topologies supported Kamel [4] to formulate a special case for computing the
number of chain topologies and maximal elements with natural generalization. Ragnarsson et
al. [5], have also studied obtainable sizes of topologies on a finite set. Benoumhani [6] computed
the number of topologies having 2, 3, . .., 12-open sets, and also 9 topologies having n+4,n+5,
and n + 6 open sets. These results are extended in [7].

Later on, Benoumhani et al. [§] extended their work to fuzzy topological spaces (FTS).
They computed the number of FTS having 2, 3,4, and 5-open sets and certain cases, where the
number of open sets is large. Basumatary et al. [9] discussed the number of fuzzy bitopological

spaces and gave some formulae.
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After the generalization of the fuzzy set [10] from crisp set and intuitionistic fuzzy set [11],
Smarandache discovered the concept of the neutrosophic set by combining the fuzzy set and
intuitionistic fuzzy set. Since the introduction of the NS (Neutrosophic set) by Smarandache
[12], several authors have contributed their work in science and technology by taking NS
as a tool. Wang |13] studied single-valued NSs in multiset and multistructure. Salama et
al. [14] studied the neutrosophic topological spaces (NTS). Lupianez [15-18] investigated NTS.
Mwechahary et al. [19] studied neutrosophic bitopological space (NBTS). Devi et al. [20] and
Ozturk et al. [21] also discussed NBTS. Kelly [22] and Kovar 23] introduced the notion of
bitopological space and tritopological space respectively. The neutrosophic crisp tri-topological
spaces are studied by Al-Hamido et al. [24].

Ishtiaq et al. |2526] studied fixed-point results in orthogonal neutrosophic metric spaces
and also certain new aspects in fuzzy fixed-point theory. Ali et al. [27] discussed solving
nonlinear fractional differential equations for contractive and weakly compatible mappings in
neutrosophic metric spaces. Hussain et al. |28] worked on some new aspects of the intuitionistic
fuzzy and neutrosophic fixed point theory. Javed et al. [29] studied the fuzzy b-metric-like
spaces. Hussain et al. [30] studied the pentagonal controlled fuzzy metric spaces with an
application to dynamic market equilibrium.

From the literature survey, it is observed that generally finding the number of topologies
(NoTs) for a set is not an easy task. Because of this current authors started research work in
this area. This article discusses formulae for calculating the NNTSs (number of NTSs) with
2,3, or 4-open sets, as well as the NNBTSs (number of NBTSs) and NNTRSs (number of
neutrosophic tritopological spaces) with the same number of open sets in topologies.

Let XN be a non-empty finite set, M7 be the finite totally ordered set with M| = m > 2
and 45 be a set that contains all the neutrosophic subsets (NSubs) of XV
values in MNT,

Note that in this paper "7 (n,m,€) denotes NNTSs on XN with [XNT| = n and &

9’NT,9;ZNT)QT(n,m, ) and (9NT,.9;NT,9;%NT)QT(11, m, £) denotes NNBTSs and

2 2

with membership

open sets, (
NNTRSs respectively on XV7' consisting £-open sets in topologies at a time where n,m, € € N,
n>1lm>2andt>2.

2. Preliminaries

Definition 2.1. [14] On a universe of discourse X7 a NS UM is defined as UNT =

<(T§T(u)7zﬁ<u),FgT(u» tw € XNT), where T, [T, FNT « XNT 170,17 Here ~0 <

T (w0)+ I () + FYNT (w) < 3%; TNT () represents degree of membership function, I3 («)

degree of indeterminacy and F}'T («) degree of non-membership function.

B. Basumatary, J. Basumatary, Number of Neutrosophic Topological Spaces on Finite Set
with £ < 4 Open Sets
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Definition 2.2. [14,]15] Let TV C 4T then TNT is called a neutrosophic topology (NT)
on XN if

o ONT |NT ¢ g NT

o UNTNUNT € FNT for any UNT UNT ¢ gNT,

o UUNT € gNT for arbitrary family {UNT :i e I} € TN,
The pair (XN, 7 NT) is called NTS and any NS in V7 is called NOS (neutrosophic open

set) in XNT,

Definition 2.3. [19] Let 7;V7 and F3¥T be the two NTs on XV, Then (XNT, g NT ZNT)

is called a NBTS.

Example 2.4. If XN = {4, ¢,w} and if FNT = {0ONT INT UNTY} and THNT =
{ONT ANT (V1Y where
NT _ 12 NT _ 12
W = <(0.7,0.1,0.5)v (0.5,01.}2,0.3)7 (0.3,&,04)%112 - <(0.2,0‘5,0.1)v (0.1,0%2,0.3)’ (06,01%3,0.5))'

Then (XN, 7 NT) and (XNT, 7N form NTS. Therefore, (XN, FNT FNTY is a NBTS.

Definition 2.5. [31] Let VT, N and FVT be the three NTs on XMT.  Then

(XNT g NT g NT g NT) s called a neutrosophic tritopological space (NTRS).

Example 2.6. If XN¥T = {«,¢,w} and consider ;N7 = {ONT 1INT yNTy g NT =

{ONT, 1NT’L%VT} and %NT — {ONT7 1NT7uéVT}'

Here, $f" = <(0.7,0z.¢1,0.5)7(0.5,01.}2,0.3)’ (0.3,f670.2)>7 BT = <(0.6,0L.05,0.3)’ (0.7,16,0.2)’ (0.8,0?170.1)>’
W = <(0.5,0Z.&2,0.3)’ (0.2,01.}1,0.2)’ (0.1,16},0.1)>'

Then (XN, FNT) (XNT 7 NT) and (XNT| VT form NTS.
Therefore (XNT, ZNT ZNT G NT) is a NTRS. In this case, (XNT, ZNT FNT FNT) s a

NTRS having 3-NOS in each of the topologies.

3. Results on NNTS

Proposition 3.1. The NNTs (Number of Neutrosophic Topologies) on XNT | whose member-

ship values lies in MNT | is finite if and only if both XNT and MNT are finite.
Result 3.2. The NNTSs having 2-NOS is one i.c., T (n,m,2) = 1.

The NT having 2-open set is the indiscrete NT which is ;N7 = {0V 1NT}
Result 3.3. The NNTs having 3-NOS is m" — 2 i.e., &' (n,m,3) = m" — 2.

These NTs necessarily consists of a chain containing 07, 1¥7 and any one NSub of XN,

In this case NTs are in the chain, of the form 0N7 C UNT C 1NT YNT is any NSub of XN,

B. Basumatary, J. Basumatary, Number of Neutrosophic Topological Spaces on Finite Set
with £ < 4 Open Sets
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Example 3.4. Let XN = {%, ¢} and MMT = {(0,1,1),(0.6,0.1,0.2),(1,0,0)}. It is seen
that, [XVT| =n =2, [ MM| =m = 3.

Then number of elements in N i.e., [Ny | = 32 = 9. These are

N N NT __ w 2 NT __ uw v NT __ 2 ¢

0 T’ 1 T’ ul I'= <(0,1,1)’ (O.6,0.1,0.2)>’ u2 = <(0,1,1)’ (1,0,0)>’ LL3 = <(0.6,0.1,0.2)’ (0,1,1)>7
NT w ¢ NT __ w ¢ NT __ 12 ¢

Ll4 <(0.6,0.1,0.2)7 (0.6,0.1,0.2)>’ L[5 - <(0.6,0.1,0.2)’ (1,0,0)>7 uﬁ - <(1,0,0)’ (0,1,1)/>

uéw - <((1f6,0)7 (0.6,0?1,0.2)>‘

So, 77 (2,3,3) =32 —2="T.

The NTs having 3-open sets are:
FNT = {ONT INT NT} goNT — (QNT |NT (NT} goNT — (oNT |NT ((NT}
FNT = {ONT INT (NT} giNT — (QNT |NT gNTy gNT — (oNT |NT (NT}

%NT — {ONT 1NT uéVT}
Result 3.5. An arbitrary NT with 4-NOSs is an NT consisting of 1T, 0NT and other two

NSubs. These NSubs are either chain of 2-elements or anti-chain of 2-elements having 1N7

and ONT as union and intersection respectively.

Theorem 3.6. In ./173‘57 = AN — {ONTINTY | the number of chains (NCs) of length 2 is
obtained by
co( ) = ("F)" — 3m" + 3.

Corollary 3.7. In /Vg, the NCs of length 4 having both ONT and 1NT is same as 02(/V§§7).

Lemma 3.8. In 45, the number of anti-chains (NACs) of size 2 (having 2-elements) with

INT g5 union and ONT as intersection is 2" — 1.

Corollary 3.9. The NAC NTs of ./Vg consisting of 4-open set is 2771 — 1.

Theorem 3.10. The NNTs in ./Vg with 4-NOSss is

n
TN (n,m,4) = (M) — g 201 42,
Follow Cor. 3.7 and Cor. [3.9] for the prove of theorem.

Example 3.11. Let, X’ = {«,#} and M7 = {(0,1,1),(0.1,0.3,0.8), (1,0,0)}. Therefore
|4 | =32 =9. These NSubs are

NT __ 12 2 NT __ 12 2 NT __ w 2

0 - <(0,1,1)’ (0,1,1)>’ 1 - <(1,0,0)’ (1,0,0)>’ ul - <(0,1,1)’ (0.1,0.3,0.8)>’
NT __ 2 © NT __ w ¢ NT __ w ©

’uQ - <(0,1,1)’ (1,0,0)>’ ’u3 - <(0.1,0.3,0.8)’ (0,1,1)>’ ’u4 - <(0.1,0.3,0.8)’ (0.1,0.3,0.8)>’
NT __ 12 ¢ NT __ w ¢ NT __ |2 4

il5 - <(0.1,0.3,0.8)’ (1,0,0)>7 uG - <(1,0,0)’ (0,1,1)>7 ﬂ7 - <(1,0,0)’ (0.1,0.3,0.8)>'

In this case, n = 2, m = 3,
2
Therefore, 7;VT(2,3,4) = (@) — 3324921 262 23=13.

These NTs with 4-NOSs are

B. Basumatary, J. Basumatary, Number of Neutrosophic Topological Spaces on Finite Set
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%NT — {ONT7 1NT,L(]1VT,5J§VT}, Lo74NT — {ONT7 lNT,L(]lVT,ﬂéVT},
9—5NT — {ONT, 1NT,L(éVT,ﬂéVT}, %NT — {ONT, 1NT,L(éVT,ﬂéVT},
tcj~7NT — {ONT, 1NT,L%VT,LL£1VT}, ,GjéNT — {ONT, 1NT,/L%VT7L%VT}7
%NT — {ONT, 1NT,iléVT,ﬂéVT}, %gT — {ONT, 1NT,iléVT,ﬂéVT},
Lo/vlleT — {ONT, 1NT’L(£1\/T,5J£VT}7 971]2\7T — {ONT, 1NT’L(£1\7T’5~14VT}7

NT _ yoNT {NT ((NT ¢(NT
'713 _{0 1 auG ’i’l7 }
Here, the only anti-chain NTs in L/VX/ is T NT with OVT and 1N7T as intersection and union

respectively.

4. Results on NNBTS

In this section, the NBTS having 3-NOSs in both NTs and the NBTS having 3-NOSs in both
NTs without repetition means NBTS of the form (XN, gNT E/;NT), where TN, E/:ZNT are
identical or non-identical topologies, and non-identical topologies having 3-NOSs respectively.

A similar meaning is used for 4-NOSs.

Result 4.1. In /ng", the NNBTS with two NOSs in both the NTs is

(TN, T (n,m,2) = 1.

12

From Result Iy (n,m,2) = 1, which is the indiscrete topology ;N1 = {ONT, 1N},
Hence, NBTS with 2-NOSs is only one i.e., (XN, 7N g NT),

Result 4.2. In /Vg, the NNBTSs having 3-NOSs in both NTs is

g NT 3 2n_
(TN TN (n,m,3) = (7 (5 = megat2,

Example 4.3. Example gives 75V1(2,3,3) = 17.

Therefore,(%NT79—NT)gT(273,3) — (9‘XNT(22,3,3)+1) — 98

Then, these NBTS;Z are
XNT o‘NT 57NT) (XNT o*NT o*NT)7 ( NT,%NT), (XNT,(Q/:NT’%NT),
XNT’%NT G”NT)’ (XNT o‘NT c‘NT)7 ( NT79~7NT)’
XNT, %NT’ 9‘NT), (XNT, %NT T)7 ( NT, %NT)’ (XNT7%NT’ %NT)7
XNT, %NT’ %NT)7 (XNT7 2NT7 7NT)7

( )

(
(
(
(
(
(
(
(
(
(

XNT’%NT’%NT)’ §§NT7 3NT7 4NT , (XNT c‘NT '%)NT) (XNT,%NT,%NT),
XNT’%NT’%NT)’

XNT, 9~4NT’ 9~4NT)7 (XNT G"NT gNT)7 (XNT, %NT’ %NT)’ (XNT’%NT’ %NT)7
XNT’%NT“%NT)’ (XNT o‘NT gNT)? (XNT7&~5NT7%NT)7

XNT, %NT’ %NT)’ (XNT, %NT, ,/7 )7

XNT’%NT’%NT)

Result 4.4. In /Vg, the NNBTSs having 3-NOSs in both NTs without repetition is

B. Basumatary, J. Basumatary, Number of Neutrosophic Topological Spaces on Finite Set
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Example 4.5. Following Example and Result , the number of NBTSs without repeti-

tion is

)

) =

Result 4.6. The NNBTSs in N , consisting 4-NOSs in both the NT is

(8

21

{(0,1,1),(0.1,0.3,0.8), (1,0,0)}.

{w,v} and MNT =

Example 4.7. Let XNT

Then, 77 (2,3,4) = 13.

and the NNBTSs is

These NBTSs are

(XNT, %NT’ 'GjiNT)’ (XNT, eojiNT7 %NT), (}gNT7 %NT’ %NT)’ (XNT7%NT’ %NT)7

Y

(XNT, %NT’ %NT)’ (XNT7 %NT7 %NT)? (XNT, %NT7 t9~7NT)7 (XNT,%NT’ %NT)

I

(XNT, %NT, %NT)’ (XNT, %NT, 9‘1]87T), (XNT, 9~1NT7 9‘1]1\/7’)’ (XNT,%NT’ %JQVT)

(XM TN T 5T,

)

(XNT, %NT’ %NT)7 (XNT, %NT7 %NT)’ (XNT, %NT’ 9~4NT)’ (XNT’%NT’ %NT)

Y

(XNT, %NT’ %NT)7 (§§NT7 %NT’ %NT)7 (XNT7 %NT’ %NT), (XNT,%NT’ %NT)

(XNT, %NT’ 9‘1]87T)’ (XNT, %NT’ 9—1]1\7T)7 (XNT, %NT7 9‘1]2VT)’ (XNT’%NT’ %gT),

)

(XNT, %NT’ %NT), (XNT, eojéNT7 Lo/‘;JLNT)7 (}gNT7 %NT, %NT)’ (XNT7%NT’ %NT)

Y

(XNT, %NT’ %NT)7 (XNT7 9~3NT7 %NT)? (XNT, 9‘3NT7 %NT)’ (XNT79~3NT’ (G/EJSIT)

(XNT, %NT’ L071]1\7T)’ (XNT, LO/ENT, Lo71]2\7T), (XNT, %NT, gllng)’

)

(XNT, %NT’ %NT)’ (XNT, %NT7 9’5NT)7 (§gNT7 9V4NT, %NT)’ (XNT,%NT, !%NT)

)

(XNT, 9~4NT’ 'GjéNT)y (XNT, 9~4NT7 %NT)’ (XNT, 9~4NT’ ZJSIT)’ (XNT’%NT’ 9~1]1VT)

(XNT, %NT’ ‘c7112VT)7 (XNT7 %NT’ ‘%]?YT)7

I

(XNT, LO/ENT, LG75NT), (XNT, %NT7 %NT)7 (XNT, 9~5NT7 %NT)’ (XNT,%NT’ %NT)

(XNT, .O/ENT, %NT), (XNT, eojéNT’ '%JSTT)7 (}gNT7 %NT, '%JIVT)’ (XNT79‘5NT’ !9"1]2VT)7

(KN T ),

?

(XNT, %NT7 %NT)’ (§§NT7 %NTv %NT)7 (XNT7 %NT’ 9~8NT)7 (XNT,%NT’ %NT)

(XNT, %NT’ 9—1]87T)’ (XNT, %NT’ '%ZIVT)? (XNT, %NT7 '%]2VT)’ (XNT,%NT’ 9‘—1]ng)’

(XNT, %NT’ %NT)7 (XNT, %NT7 Lc]éNT)7 (}gNT7 %NT’ %NT)’ (XNT,%NT’ !%](}IT)j

)

I

(XNT, %NT’ %NT)’ (XNT, %NT, %NT), (XNT, %NT7 !%ZSTT% (XNT,%NT’ ‘671]1VT)

(XNT, %NT’ %JQVT), (XNT, %NT? 9"1]3\7T)7

Y

)

(XNT, %NT’ 9~9NT)7 (XNT7 9~9NT7 9~fS/’T)7 (XNT, %NT’ 9~1]1VT)’ (XNT’%NT’ (c/~1]2VT)

(XNT, %NT, gll?YT)
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2
S

=3

NT 91](;7T) (XNT 9‘1]87T gNT) (XNT c‘NT gNT) (XNT o‘NT gNT)

) )

T N (XNT c‘—NT 9NT) (XNT c*NT 9NT)

9

(
( ]1V )
(XNT 9‘1]2VT’!/1]2VT)7 (XNT c“NT 9NT)
( 37T,
3

i

)

Result 4.8. In /ng", the NNBTSs having 4-NOSs in both NTs without repetition is
(TAT, T NN (n,m,4) = (7 D),

7 Y

Example 4.9. Following Example and result the number of NBTSs without repeti-
_ (FNT(2,34)\ _ (13
tion is 78 = ( 5 )—(2).

5. Results on NNTRS

In this section, the NTRS having 3-NOS in three NTs and the NTRS having 3-NOS

in three NTs without repetition means NTRS of the form (XNT, N T,?/:ZN T,%N Ty where

12

Z»N T 9:ZN N ,éN T are identical or non-identical topologies and non-identical topologies having

3-NOS respectively. A similar meaning is used for 4-NOS.

Result 5.1. In ,/ng the NNTRS consisting 2-NOSs in three NT s

(‘G/:NT"G/;NT 9NT)NT(n m, 2) 1.

In this case NT with 2-NOSs is the indiscrete one i.e., TNT = {ONT ANT}.  Therefore,
NNTRS with 2-NOSs is exactly one, namely (XNT g NT g NT g NT),

Result 5.2. The NNTRSs consisting 3-NOSs in all three NT in ./Vg is
(%NT’ *ZNT7 fféNT)gT(ﬂ; m, 3) = (9XNT(ném’3)+2) .

Example 5.3. Example implies (757 (2,3,3) = 1.
Therefore, (7N, TN, Q‘NT)NT(Q 3,3) = (gXNT(2?;373)+2) — 9XBXT _ gy
14 ’ .

Result 5.4. The NNTRSs consisting 3-NOSs in all three NT without repetition in /ng 1S

g NT
(!ojNT7 %NT’ %NT)QT(ﬂ,m, 3) _ (Jx (:))n,m,?))).

Example 5.5. From Example H FNT(2,3,3) = 7. In this case, the NTRSs having 3-NOSs

in three NTs without repetition are

NT NT NT NT NT NT NT NT NT NT NT NT
X7, 70, ), (X 97, 7, I ), (XN, 90, 75 5

I

(XNT G"NT 9“NT’%NT) (XNT o‘lNT %NT %NT)

(XNT %NT %NT %NT) XNT o‘NT o‘NT o‘NT) (XNT o”NT gNT gNT)
M M )

) )

i

(
(XNT G”NT o‘NT o‘NT)
(

(XNT o"lNT 9‘NT gNT) XNT’%NT c"NT c"NT) (XNT c"NT %NT %NT)’
NT G"NT g NT o NT NT c‘NT g NT c‘NT
(X ’ 1 7‘/5 7‘/6 )7 (X ) 1 7‘/5 7‘/7 )

)

NT NT NT NT
XN I, ),

B. Basumatary, J. Basumatary, Number of Neutrosophic Topological Spaces on Finite Set
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(XNT o‘QNT %NT o‘NT) gNT gNT gNT), (XNT c‘NT %NT %NT>

Y )

(

(XNT 9—NT 9—NT 9’NT)
(XNT GENT gNT 9"NT)7 (XNT’%NT 9"NT 9‘NT)’( 9" 9" %NT)’
(XNT o‘NT (o]NT“o]NT)’ (XNT 5,7N 9 g )

(XNTa %NTv %NTa ‘%NT)7
(XNT,%NT,g‘NT %NT) (XNT O‘3NT 9‘NT NT) (XNT c‘éNT %NT,%NT)’

(XNT G"NT 9NT’%NT) (XNT GENT”G/ENT %NT)

NT NT NT NT
(XN, 757, 96, 7)),

N

)

NT NT NT NT NT NT NT NT
XM 700,957,960 ), XN, 9,00, 957,977,

NT NT NT NT
(X700, 767, 977

NT NT NT NT
(XN, GNT GNT FNT),

Therefore, the NNTRSs consisting 3-NOSs in all three N'T's without repetition is

(TNT. g oNT gNT)NT@ 3,3) = 35 = (9XNT§)2,3,3)) _ (g)

7 7

Result 5.6. (FN7, TNT FNT)NT (n,m, 3) = W (TNT, T NT)NT (n,m, 3).

Example 5.7. From Example [4.3] and [5.3] we have,

(9NT79:ZNT)NT( 3 3) — 928 and (G‘NT 9NT 9NT)NT( 3 3) = 84.

Therefore 3 x (TN, TNET(2,38,3) = P x28=84= (TN, TN, TNET(2,3,3).

Result 5.8. In /Vg , the NNTRSs consisting 4-NOSs in three NTs is

(%NT’Q:ZNT gNT)NT(n m, 4) = (P/'XNT(némA)—&—Q)'

Example 5.9. Example implies,
NT(2,3,4) = 13.

Then the NNTRS having 4-NOSs is

INT (2,3,4)+2
(TNT, TN TNTET(2,3,4) = (7 G392

13(13+1)(13+2
N T — 1BUSH)ASHD) _ y55,

= 6
Result 5.10. The NNTRSs consisting 4-NOSs in all three NT without repetition in /V;é" 18

g NT , ’4
(gNT to/~NT yNT)NT(n m74) _ (JX (Snm ))

I Y

Example 5.11. From Example I NT( ,3,4) = 13.  Following Example
and result [5.10, the NNTRSs consisting 4-NOSs in all three NT without repetition is
(9NT,9NT FNTYIT(2,3,4) = 286.

2

(ZT (nm,4)+2) (FNT, g NTYNT(

Result 5.12. (A7, TN, GNT)NT (n,m, 4) = : AT g

n,m,4).

Example 5.13. From Examples [3.11] [4.7] and [5.9] we have

F'1(2,3,4) =13, (TN, TNTFT(2,3,4) = 91 and (TNT, TN, TNT)PT(2,3,4) = 455.

B. Basumatary, J. Basumatary, Number of Neutrosophic Topological Spaces on Finite Set
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Therefore,
g NT
T _CIDAD (g NT g NT\NT(2,3,4) = 1842 5 91 = 455 = (FNT, TNT, TNT)NT(2,3,4).

6. Effective of the proposed method

The formula for giving the number of topologies T'(n) is still not obtained for a finite set
X having n elements. If n is small, then we can compute it by hand. But the difficulty
increases when n becomes large. Studying this particular area is also a highly valued part of
the topology, and this is one of the fascinating and challenging research areas. Note that the
explicit formula for finding the number of topologies is undetermined till now. This paper is
towards the formulae for finding the number of neutrosophic topological spaces having 2, 3, 4-
open sets, the number of neutrosophic bitopological spaces, and tritopological spaces having

the same number of open sets in topologies.

7. Conclusions

In this paper, the NNTSs consisting of small NOSs i.e., 2,3, and 4-open sets are computed.
Moreover, the NNBTSs and NNTRSs are computed. It is also observed that formulae for
finding NNTSs, NNBTSs, and NNTRSs are interrelated. Hope this work will help in further
study of NNTSs with greater open sets. In the future, the NNBTSs having k, [-open sets and
the NNTRSs having k, [, 77z-open sets can be found where k # [ # 72. Moreover, we aim to
extend our work to study the existence of NNTSs in the topological group.
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