
CHAPTER 1

Introduction, Literature Review, and Basic
Concepts

This chapter provides some related notions of the neutrosophic set (NS)

and neutrosophic topology (NT) that is relevant and necessary to the re-

search work.

1.1 Introduction

Topology is one of the main areas of abstract mathematics concerned

with space and deformation. A non-empty set together with a topology

is called a topological space. Generally, topological spaces are general-

izations of Euclidean Spaces in which the idea of proximity, or limits,

is described in terms of relationships between sets rather than distance.

Starting from single topology it is extended to bitopology and tritopology

etc.

The classical set theory allows the membership value of the elements

in the set in binary terms. The fuzzy set (FS) theory is a tool for deal-

ing with vagueness and incomplete data and is much more evolving and

applied in different fields. The FS theory permits membership function
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valued in the interval [0,1]. The notion of the FS is widely used among

both ‘pure’ and ‘applied’ mathematicians. It has also raised enthusiasm

among many engineers, biologists, psychologists, economists, and ex-

perts in other areas who use or at least try to use mathematical ideas and

methods in their research. Because of different options of human think-

ing, the FS with some conditions has been improved and extended to the

intuitionistic fuzzy set (IFS). After that, the concept of a neutrosophic

set (NS) was introduced by Professor F. Smarandache by extending the

concepts of FS and IFS. He proposed NS to deal with and manage in-

complete, indeterminant, and inconsistent information by utilizing the

truth membership function, indeterminacy membership function, and fal-

sity membership function (Smarandache, 1998, 2002, 2005). Whereas, a

FS is used to control uncertainty by using the membership function only.

To manage the unclear and inconsistent information seen in real-world

situations, the NS is one of the most important sets.

One of the earliest areas of pure mathematics to which FS and NS

were systematically applied was classical topology. Among several well-

known challenges, one challenge is to find the number of topologies in

the classical case. Even though no logical explicit and recursive count-

ing formula is yet known, some results still exist. Another approach is

the study of the topologies by their number of open sets. Some early re-

searchers initiated the study of finding the number of fuzzy topological

spaces (FTSs) and obtained some results. Salama and Alblowi (2012)

introduced neutrosophic topological space (NTS). It is observed that the

NTSs that satisfy some finiteness conditions have not been considered

yet unlike the classical and fuzzy topologies (FTs), where this field is

also active and attracting several researchers. The study of the number of

NTSs, including neutrosophic clopen topological spaces, neutrosophic

crisp topological spaces, and the corresponding number of neutrosophic

bitopological spaces and tritopological spaces on a finite set, is the sole
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focus of this research work.

1.2 Literature Review

We all know how much classical set theory has influenced traditional

mathematics. The two-valued logic states that an element can either

belong to a set or not belong to that set. In other words, this logic is

clear-cut and unambiguous. With the rapid development of science and

technology, more and more scientists have gradually realized the vital im-

portance of multi-valued logic. In 1965, Professor Lotfi A. Zadeh from

Berkeley University put forward the concept of a FS (Zadeh, 1965) as a

means of representing and handling data or information that is not pre-

cise. Atanassov (1986) introduced the idea of IFSs, which expands FSs

by using a non-membership degree to deal with the existence of vague-

ness and uncertainty brought on by imperfect knowledge or information.

Following that, a generalization of the FS was developed by several aca-

demics to describe numerous additional notions. In 1995, Smarandache

found that some objects have indeterminacy or neutrality other than mem-

bership and non-membership, and so he coined the notion of neutro-

sophic theory (Smarandache, 1998, 2002, 2005). The theory is essen-

tial in many applications since indeterminacy is quantified explicitly, and

truth membership, indeterminacy membership, and falsity membership

are independent. This theory also generalizes the concept of classical

sets, FSs, and IFSs. For the fundamental ideas of the neutrosophic crisp

set and its operations, some potential definitions are taken into consider-

ation (Hanafy et al., 2013; Salama, 2013). Smarandache (2016) extended

the NS to neutrosophic overset, neutrosophic underset, and neutrosophic

offset.

Kelly (1963) was one of the first to study bitopological space. A set

X having two topologies, τ1 and τ2, on it is referred to as a bitopological

3



space (X , τ1, τ2). The study of tritopological space was first initiated by

Kovar (2000), where a non-empty set X with three topologies is called

tritopological spaces. Later, Palaniammal (2011) investigated tritopolog-

ical spaces.

In 1968, C. L. Chang developed the idea of FTSs (Chang, 1968).

Later, the fundamental idea behind the so-called “IFTS” was coined by

Çoker (1997). He introduced the definitions of fuzzy continuity, fuzzy

compactness, fuzzy connectedness, and fuzzy Hausdorff space after pro-

viding the basic definitions and the necessary examples. Then, he worked

to obtain several preservation properties and some characterizations of

fuzzy compactness and fuzzy connectedness. The FTS is also extended

to the fuzzy bitopological spaces, and fuzzy tritopological spaces. In

1989, Kandil introduced the concept of the fuzzy bitopological spaces

(Kandil et al., 1995). Recently, many researchers discussed and studied

fuzzy bitopological spaces (Das and Bhattacharya, 2018; Das et al., 2019,

2021).

After that, as a generalization of FT and intuitionistic fuzzy topology

(IFT), Salama and Alblowi (2012) introduced the novel concept of NTS.

They also introduced various forms of separation axioms in NTSs as a

new tool for practical applications. Iswarya and Bageerathi (2016) in-

troduced the neutrosophic semi-open sets and neutrosophic semi-closed

sets in NTS and derived some of their characterizations. Numerous def-

initions, related properties, and characteristics have also been studied in

addition to the notion of a generalized neutrosophic closed set (Dhavasee-

lan and Jafari, 2017). The concept of generalized semi-closed sets in NTS

was coined by Shanthi et al. (2018). The connectedness of αω-closed sets

in NTS was studied by Parimala et al. (2020).

Ozturk and Ozkan (2019) introduced the notion of neutrosophic bitopo-

logical space. Also, the concept of neutrosophic bitopological spaces

was discussed by many researchers (Mwchahary and Basumatary, 2020;
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Ali Abbas et al., 2021). Al-Hamido (2018) introduced neutrosophic crisp

bitopological space and the concept of neutrosophic crisp tritopological

space (Al-Hamido and Gharibah, 2018). Currently many authors (Al-

Omeri, 2016; Al-Omeri and Smarandache, 2017; Babu and Rajasekhar,

2021a,b; Salama et al., 2014c; Salama, 2013; Salama et al., 2014a) also

studied on NTSs. In this way, several researchers have given contribu-

tions to topological spaces based on crisp, fuzzy, and neutrosophic sense.

A simple finite set has a small number of subsets, so enumerating

them is a straightforward problem. The challenges appear only when

the set is unlimited. By introducing the concept of aleph and aleph-null,

George Cantor solved the problem of infiniteness (Cantor, 1984). How-

ever, in a fuzzy environment and a neutrosophic environment, the prob-

lem of counting becomes complicated due to the lack of sharp bound-

aries. Many authors consider the counting problem in the case of fuzzy

subsets (Yager, 1993; Mohapatra and Hong, 2022), which becomes more

complicated even if the set is finite. This is considered a challenging

problem due to the uncertainty in membership values. Murali (2006)

showed that there exists a bijection between the collection of all equiva-

lence classes of fuzzy subsets of X and the collection of all chains in the

power set of X .

Let X be a finite set having n elements. There is still no explicit for-

mula for calculating T (n), the number of topologies. If |X| = n (say

n = 1, 2, 3), we can calculate it by hand. But when n becomes large, the

difficulty in finding the number of topologies increases. Some results on

the number of topologies on a finite set are computed, where the author

obtained a sharper bound for the number of distinct topologies, namely,

2(n(n−1)) (Krishnamurthy, 1966). Then they pursued the argument and

proved a theorem showing that T (n) has precisely the number of certain

n×n matrices of zeros and ones. Sharp Jr. (1968) studied quasi-orderings

and topologies on finite sets. They showed that no topology, other than
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the discrete, has cardinal greater than 3
42

n and some other bounds are de-

rived on the cardinality of connected, non-T0, connected and non-T0, and

non-connected topologies. Stephen (1968) proved two results connected

with topologies on a finite set of elements. One of these two is the only

topology on X , having more than 3×2n−2-open sets is the discrete topol-

ogy. Several authors contributed to the counting problems of the number

of topologies and obtained some results such as Shafaat (1968); Evans

et al. (1967). Kleitman and Rothschild (1970) showed that the logarithm

(base 2) of the number of distinct topologies on a set of n-elements is

asymptotic to n2

4 as n goes to infinity. Stanley (1971) found all non-

homeomorphic topologies with n-points and ≥ 7
162

n-open sets by using

the correspondence between finite T0-topologies and partial orders. He

computed T (n, k) for large values of k, viz.; 3.2(n−3) ≤ k ≤ 2n and also

T0 topologies on a set having either n+1, n+2 or n+3-open sets. But-

ler and Markowsky (1973) have presented some formulae related to the

number of T0 topologies with the number of topologies on n points, the

number of connected T0 topologies with the number of connected topolo-

gies with n points, the number of isomorphism classes of T0 topologies

on n points with the number of isomorphism classes of connected T0

topologies on n points, number of isomorphism classes of topologies on

n points with the number of isomorphism classes of connected topolo-

gies on n points, and many more. Some research works on the number

of topologies can be found in Borevich (1977), Borevich et al. (1979),

Erné and Stege (1991). Borevich (1977) obtained the number of all the

topologies on a fixed set of ten points and is equal to 8, 977, 053, 873, 043.

Out of these, 6, 611, 065, 248, 783 topologies satisfy the separation ax-

iom T0. Erné (1981) has presented some combinatorial identities con-

cerning the number T0(n, j) of all T0 topologies on n points with j-open

sets (which is also the number of all posets with n elements and j an-

tichains). Also, the average cardinality of T0 topologies on n points has
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shown to be 2
n
2+O(log n). Erné and Stege (1991) obtained the numbers of

finite topological spaces with n points and k-open sets for n < 12 and

all k, by using the well-known one-to-one correspondence between finite

quasi-ordered sets and finite topological spaces. Also, they obtained the

numbers of all topologies on n ≤ 14 points satisfying various degrees

of separation and connectedness properties. Moreover, they found that

the number of (connected) topologies on 14 points exceeds 1023. Some

results (Hartmanis, 1958; Schnare, 1967, 1968) have been improved by

showing that, if n ≥ 4, then any topological space on n points (equiv-

alently, any preordered set on n points) which is not in a certain short

‘forbidden’ list has at least 2n complements (Brown and Watson, 1996).

Brinkmann and McKay (2005) enumerated isomorphism classes of sev-

eral types of transitive relations (equivalently, finite topologies) up to 15

or 16 points. Benoumhani (2006) computed the number of topology on

a set X having n elements and k-open sets for 2 ≤ k ≤ 12, as well as

other results concerning T0 topologies on X having n+ 4 ≤ k ≤ n+ 6

open sets.

Kolli (2007) used a direct approach to compute the set of all labeled

topologies on having k-open sets for all n ≥ 4 and k ≥ 6.2n−4. Ragnars-

son and Tenner (2010) studied the smaller possible number of points in

a topological space having k-open sets. Iyer et al. (2013) introduced the

concept of ϵ-chainability in topological spaces. Kolli (2014) studied the

number of all labeled T0- topologies having k-open sets and computed

the number of labeled T0- topologies having k-open sets on a set with

n-points and also the number of those which are non-homeomorphic for

k ≥ 5.2(n−4) and arbitrary n ≥ 4. Also, he computed numbers t0(n, k)

of all unlabaled and non-T0 topologies with k-open sets for k ≥ 2(n−2).

Kamel (2015) formulated a special case for computing the number of

chain topological spaces and maximal elements with natural generaliza-

tion. Beer and Bloomfield (2018) studied closure operators for clopen

7



topologies. Recently, Obinna and Adeniji (2019) determined the number

of k-element in open and clopen topological space for 1 ≤ n ≤ 4, and

the corresponding graph for n ≤ 3.

Yager (1993) discussed the number of classes in a FS. Murali (2005)

studied the number of k-level equivalence classes of fuzzy subsets of a

finite set of n elements under a natural equivalence which is related to

Stirling numbers. Viewing fuzzy subsets as functions from a set into the

unit interval, he also associates a kernel partition with every equivalence

class of fuzzy subsets. After some elementary properties of the equiva-

lence, they provided a recurrence relation and a generating function con-

cerning the number of k-level fuzzy subsets using Stirling numbers. Mu-

rali (2006) re-examined F (n) through an interpretation of equivalence

classes of fuzzy subsets as ordered partitions or chains in the boolean

algebra of the power set of a set. Also, he derived some recurrence re-

lations, an infinite series as a closed form, and a generating function for

F (n) for any natural number n. Jaballah (2000) worked on the effective

generators for fuzzy ideals. Jaballah (2001) discussed the reduced fuzzy

primary decomposition for fuzzy ideals and also studied the length of

maximal chains and the number of ideals in commutative rings (Jaballah

and Saidi, 2010). Benoumhani and Jaballah (2019) established several

results concerning chains in Y X , the lattice of mappings from a finite

set X into a finite totally ordered set Y . They computed total num-

ber of chains and the cardinalities of several collections of chains. As

a result, they determined the total number of chained Y -FTs defined on

X . Also, they obtained several related and other well-known results as

corollaries. In addition, they presented some natural questions for further

investigation. The issues of determining the number Fn of fuzzy subsets

of a nonempty finite set X have been solved by Mohapatra and Hong

(2022). They incorporate the equivalence relation on the collection of all

fuzzy subsets of X . Moreover, they derived two closed explicit formu-
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lae for Fn, which is the sum of a finite series in the product of binomial

numbers or the sum of k-level fuzzy subsets Fn,k by introducing a clas-

sification technique. The number of the maximal chains of crisp subsets

of X can also be determined using these precise formulae. Additionally,

they presented some fundamental properties of Fn,k, and Fn.

Shostak (1989) studied basic ideas and results of FT in his paper two

decades of FT. Fora (2017) showed the number of fuzzy clopen sets in an

arbitrary FTS can be any natural number greater than 1 if it is finite, and

gives an upper bound for this number. He also proved that the number

of all crisp fuzzy clopen sets in an arbitrary FTS is a power of 2 if it

is finite. Benoumhani and Jaballah (2017) studied FTSs and computed

some results for finding the number of FTs.

1.3 Aims and Objectives

The literature review of topological spaces reveals that the precise for-

mula for calculating the number of topologies has not yet been discov-

ered. Some work related to the number of neutrosophic topologies in

the classical and fuzzy sense satisfying finiteness conditions have been

observed. As the neutrosophic set is the extension of the fuzzy set and

currently, researchers in several domains are mainly interested in neutro-

sophic environments. Among several fields in the neutrosophic environ-

ment, neutrosophic topology is the one that attracts researchers. Some

works in neutrosophic topological spaces have been studied by several

researchers, but so far, there is no work related to the number of neu-

trosophic topological spaces. By observing this, we have the following

objectives for the research work.

The main objectives of the research work are:

(i) To find the cardinalities of the Neutrosophic Set and Neutro-

sophic Crisp Set.
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To find the number of

(ii) Neutrosophic Topological Spaces.

(iii) Neutrosophic Clopen Topological Spaces.

(iv) Neutrosophic Bitopological Spaces and Neutrosophic Tritopo-

logical Spaces.

(v) Neutrosophic Clopen Bitopological Spaces and Neutrosophic

Clopen Tritopological Spaces.

(vi) Neutrosophic Crisp Topological Spaces.

1.4 Research Methodology

In this research work, the definitions of NS, NCrS, NTS, and NCrTS

have been taken as a base in computing the formulae for the number of

topological spaces. Also, we proposed the definition of NCLTS and com-

puted some results for finding the number of the NTSs and the number of

NCrTSs. The concept of Combinatorics and the Stirling number of the

second kind plays a vital role in the computation of the number of NTSs.

1.5 Importance of the Research Work

Topology is used to tell how elements of a set are related spatially to each

other and it is observed that the same set can have different topologies.

Studying in this particular area is also a very important part of the field

of topology and this is one of the interesting and difficult research areas.

It is observed that till now the explicit formula for finding the number

of topologies is not obtained and many researchers are doing research on

this particular area. In this study, the number of bitopological spaces and

tritopological spaces is also included for the first time in the neutrosophic

10



sense. Moreover, it is found that the results obtained in this research work

are closely related to some known formulae in number theory.

1.6 Preliminaries

This section provides the basic definitions and operations related to the

subsequent chapters.

Definition 1.6.1 (Kelley, 2017)blank

Let X be a set and let τ be a collection of subsets of X satisfying the

following three conditions:

(i) ϕ,X ∈ τ .

(ii) If G1, G2 ∈ τ then G1 ∩G2 ∈ τ .

(iii) If Gλ ∈ τ for every λ ∈ Λ, where λ is an arbitrary set then

∪{Gλ : λ ∈ Λ} ∈ τ .

Then τ is called a topology for X , the members of τ are called τ -open

or simply open sets, and the pair (X , τ) is called a topological space.

The elements of X will be called points of the space. In brief, a topology

for X is a collection of subsets of X , containing ϕ and X and closed

under finite intersections and arbitrary unions.

Definition 1.6.2 (Kelley, 2017)blank

Let (X , τ) be a topological space. A subset F of X is said to be τ

closed if and only if its complement F
′
is open.

Definition 1.6.3 (Kelley, 2017)blank

A topology τ on a non-empty set X is called a clopen topology provided

each member of τ is open and closed.

Definition 1.6.4 (Kelly, 1963)blank

Let τi and τj be two topologies on X , then the triple (X , τi, τj) is said

to be a bitopological space.
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Definition 1.6.5 (Kovar, 2000)blank

Let τi, τj, and τk be three topologies on X , then the quadruple (X , τi, τj, τk)

is said to be a tritopological space.

Remark 1.6.1 (Palaniammal, 2011)blank

It is easy to verify that every topological space can generate a bitopolog-

ical space and that any bitopological space can generate a tritopological

space.

Definition 1.6.6 (Benoumhani, 2006)blank

The number of partitions of a finite set with n elements into k blocks is

the Stirling number of the second kind. It is denoted by S(n, k) or Sn,k.

The explicit formula for Stirling numbers of the second kind is

S(n, k) = Sn,k =
1

k!

k∑
j=0

(−1)j
(
k

j

)
(k − j)n.

Definition 1.6.7 (Stanley, 1971)blank

A chain topology on X , is a topology whose open sets are totally ordered

by inclusion. The number of chain topologies on a set X with n elements,

having k-open sets is usually denoted by C(n, k).

Definition 1.6.8 (Stanley, 1971)blank

Let C(n, k) be the number of chain topologies on X having k-open sets.

Then,

C(n, k) =
n−1∑
l=1

(
n

k

)
C(l, k − 1) = (k − 1)!S(n, k − 1).

Theorem 1.6.1 (Obinna and Adeniji, 2019)blank

Let (X , τ) be a topological space, then a topology having k-element is

clopen if and only if k = 2n for n ≥ 1.
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1.7 Fuzzy Set and Fuzzy Topological Space

Definition 1.7.1 (Zadeh, 1965)blank

Let X be a universal set. Then a function A : X → [0, 1] define a FS

on X , where A is called the membership function and µA(x) is called

membership grade of x.

The FS A is also written as A = {(x, µA(x)) : x ∈ X }, where each

pair (x, µA(x)) is called singleton.

Definition 1.7.2 (Chang, 1968)blank

A FT τ on a set X consists of a collection of fuzzy subsets of X called

open set, satisfying the following three axioms:

(i) The fuzzy subsets 0F and 1F are in τ .

(ii) The union ∪i∈IUi of any collection {Ui : i ∈ I} of elements of

τ is also in τ .

(iii) The intersection U1 ∩U2 ∈ τ , for any two elements U1, U2 ∈ τ .

The members of τ is called open set and the pair (X , τ) is called

FTS. The existence of a topology τ in X with membership values in M

implies necessarily that 0F and 1F are open sets in τ .

Definition 1.7.3 (Kandil et al., 1995)blank

A fuzzy bitopological space is a triple a (X , τ1, τ2), where τ1 and τ2 are

arbitrary FTs on X .

Definition 1.7.4 (Palaniammal, 2011)blank

A fuzzy tritopological space is a quadruple (X , τ1, τ2, τ3), where τ1, τ2,

and τ3 are arbitrary FTs on X .

Definition 1.7.5 (Chon, 2009)blank

Let X be a set. A function A : X ×X → [0, 1] is called a fuzzy relation

in X . The fuzzy relation A in X is reflexive iff A(x, x) = 1 for all
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x ∈ X , A is transitive iff A(x, z) ≥ sup min (A(x, y), A(y, z)), and A

is antisymmetric iff A(x, y) > 0 and A(y, x) > 0 implies x = y. A fuzzy

relation A is a fuzzy partial order relation if A is reflexive, antisymmetric,

and transitive. A fuzzy partial order relation A is a fuzzy total order

relation iff A(x, y) > 0 or A(y, x) > 0 for all x, y ∈ X . If A is a fuzzy

partial order relation in a set X , then (X , A) is called a fuzzy partially

ordered set or a fuzzy poset. If B is a fuzzy total order relation in a set

X , then (X , B) is called a fuzzy totally ordered set or a fuzzy chain.

Definition 1.7.6 (Chon, 2009)blank

Let (X , A) be a fuzzy poset and let B ⊂ X . An element u ∈ X is said

to be an upper bound for a subset B iff A(b, u) > 0 for all b ∈ B. An

upper bound u0 for B is the least upper bound (∨) of B iff A(u0, u) > 0

for every upper bound u for B. An element v ∈ X is said to be a lower

bound for a subset B iff A(v, b) > 0 for all b ∈ B. A lower bound v0 for

B is the greatest lower bound (∧) of B iff A(v, v0) > 0 for every lower

bound v for B.

Definition 1.7.7 (Chon, 2009)blank

Let (X , A) be a fuzzy poset. Then (X , A) is a fuzzy lattice iff x ∨ y and

x ∧ y exist for all x, y ∈ X .

Proposition 1.7.1 (Benoumhani and Jaballah, 2017)blank

The number of FTs on X , with membership values in M , is finite if and

only if X and M are both finite.

Lemma 1.7.1 (Benoumhani and Jaballah, 2017)blank

Let m and n be positive integers, then for any numbers y1, y2, ..., ym, we

have
∑

(i1,i2,...,in)∈{1,2,...,m}n yi1yi2 . . . yin = (
∑m

i=1 yi)
n.

Theorem 1.7.1 (Benoumhani and Jaballah, 2017)blank

The number τF(n,m, 4) of FTs in F having exactly 4-open sets is given

by

τF(n,m, 4) =

(
m(m+ 1)

2

)n

− 3mn + 2n−1 + 2.
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Theorem 1.7.2 (Benoumhani and Jaballah, 2017)blank

The number τF(n,m, 5) of FTs in F having exactly 5-open sets is given

by

τF(n,m, 5) =

(
m+ 2

3

)n

−4

(
m+ 1

2

)n

+5mn−(m−1)n+(2m−1)n−2n+1.

Theorem 1.7.3 (Benoumhani and Jaballah, 2017)blank

For n ≥ m ≥ 2, the number of FTs in F having k-open sets where

mn −mn−2 < k < mn and k = mn −mn−2 are

(i) τF(n,m, k) = 0 for mn −mn−2 < k < mn.

(ii) τF(n,m,mn −mn−2) = n(n− 1).

The following well known algorithm enables us to compute the number

of chains of a certain length in a finite ordered set.

Algorithm 1.7.1 (Benoumhani and Jaballah, 2017)blank

Let P be a finite ordered set and ck(P) or ck denotes the number of

chains with k elements in the ordered set P . Also, for each u ∈ P , let

ck(u) be the number of chains with k elements from P and with max-

imal element u. The numbers c1, c2, . . . , cn are obtained recursively as

follows:

(i) c1(u) = 1, for each u ∈ P .

(ii) ck(u) =
∑

v<u ck−1(v), 2 ≤ k ≤ n, for each u ∈ P .

(iii) ck := ck(P) =
∑

u∈P ck(u), 1 ≤ k ≤ n.

1.8 Neutrosophic Set and Neutrosophic Topological Space

Definition 1.8.1 (Smarandache, 2005)blank

A NS ANT on a universe of discourse X is defined as ANT = ⟨ x
(T (x),I(x),F (x)) :

x ∈ X ⟩, where T, I, F : X →]−0, 1+[. Note that −0 ≤ T (x) + I(x) +
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F (x) ≤ 3+; T (x), I(x), and F (x) represents the degree of membership

function, degree of indeterminacy, and degree of non-membership func-

tion respectively.

Definition 1.8.2 (Smarandache, 2005)blank

Let X ̸= ϕ and ANT = ⟨ x

(TANT (x),IANT (x),FANT )(x)
: x ∈ X ⟩, and

BNT = ⟨ x

(TBNT (x),IBNT (x),FBNT (x))
: x ∈ X ⟩ are NS. Then,

(i) ANT ∧BNT =

⟨ x

(min(TANT (x),TBNT (x)),max(IANT (x),IBNT (x)),max(FANT (x),FBNT (x)))
: x ∈

X ⟩.

(ii) ANT ∨BNT

= ⟨ x

(max(TANT (x),TBNT (x)),min(IANT (x),IBNT (x)),min(FANT (x),FBNT (x)))
:

x ∈ X ⟩.

In general, the intersection ∩ and union ∪ of a collection of NS {ANT
i :

i ∈ I}, are defined by

∩i∈IA
NT
i = ⟨ x(

inf{T
ANT
i

(x)},sup{I
ANT
i

(x)},sup{F
ANT
i

(x)}
) : x ∈ X ⟩,

∪i∈IA
NT
i = ⟨ x(

sup{T
ANT
i

(x)},inf{I
ANT
i

(x)},inf{F
ANT
i

(x)}
) : x ∈ X ⟩.

Definition 1.8.3 (Salama and Alblowi, 2012)blank

The neutrosophic subsets 0NT and 1NT in X are as follows:

0NT may be defined as:

0NT = {⟨x, 0, 0, 1⟩ : x ∈ X },

0NT = {⟨x, 0, 1, 1⟩ : x ∈ X },

0NT = {⟨x, 0, 1, 0⟩ : x ∈ X },

0NT = {⟨x, 0, 0, 0⟩ : x ∈ X }.

1NT may be defined as:

1NT = {⟨x, 1, 0, 0⟩ : x ∈ X },

1NT = {⟨x, 1, 0, 1⟩ : x ∈ X },

1NT = {⟨x, 1, 1, 0⟩ : x ∈ X },

1NT = {⟨x, 1, 1, 1⟩ : x ∈ X }.
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Definition 1.8.4 (Salama and Alblowi, 2012)blank

Let A = ⟨µA, ρA, γA⟩ be a NS on X , then the complement of the set A,

C (A), for short, may be defined as three kinds of complements

(i) C (A) = {⟨x, 1− µA(x), 1− ρA(x), 1− γA(x)⟩ : x ∈ X }.

(ii) C (A) = {⟨x, γA(x), ρA(x), µA(x)⟩ : x ∈ X }.

(iii) C (A) = {⟨x, γA(x), 1− ρA(x), µA(x)⟩ : x ∈ X }.

Definition 1.8.5 (Salama and Alblowi, 2012)blank

Let X be a non-empty set, and neutrosophic subsets ANT and BNT in

the form ANT = ⟨µANT , ρANT , γANT ⟩, BNT = ⟨µBNT , ρBNT , γBNT ⟩, then

the following two possible definitions may be considered for subsets.

ANT ⊆ BNT may be defined as:

ANT ⊆ BNT ⇐⇒ µANT (x) ≤ µBNT (x), ρANT (x) ≥ ρBNT (x)

and γANT (x) ≤ γBNT (x),

ANT ⊆ BNT ⇐⇒ µANT (x) ≤ µBNT (x), ρANT (x) ≥ ρBNT (x)

and γANT (x) ≥ γBNT (x).

Definition 1.8.6 (Salama and Alblowi, 2012)blank

A NT on a non-empty set X is a family τNT of neutrosophic subsets in

X satisfying the following axioms

(i) 0NT , 1NT ∈ τNT .

(ii) ANT
1 ∩ ANT

2 ∈ τNT , for any ANT
1 , ANT

2 ∈ τNT .

(iii) ∪ANT
i ∈ τNT , for arbitrary family {ANT

i : i ∈ I} ∈ τNT .

The pair
(
X , τNT

)
is called NTS and any NS in τNT is called neutro-

sophic open set (NOS) in X .

Definition 1.8.7 (Salama and Alblowi, 2012)blank

Let (X , τNT ) be a NTS over X and ANT be a NS over X . Then ANT

is said to be a neutrosophic closed set if its complement is a NOS.
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Definition 1.8.8 (Ozturk and Ozkan, 2019)blank

Let τNT
i and τNT

j are any two NTs on X , the triple
(
X , τNT

i , τNT
j

)
is

said to be a neutrosophic bitopological space.

Definition 1.8.9 (Ozturk and Ozkan, 2019)blank

Let (X , τNT
1 , τNT

2 ) be a neutrosophic bitopological space. A NS ANT =

⟨ x
(TNT

A (x),INT
A (x),FNT

A (x))
: x ∈ X ⟩ over X is called a pairwise NOS in

(X , τNT
1 , τNT

2 ) if there exist a NS

ANT
1 = ⟨ x

(T
ANT
1

(x),IA
1NT

(x),F
ANT
1

(x)) : x ∈ X ⟩ in τNT
1 and a NS ANT

2 =

⟨ x
(T

ANT
2

(x),IA
2NT

(x),F
ANT
2

(x)) : x ∈ X ⟩ in τNT
2 such that ANT = ANT

1 ∪ANT
2 .

Definition 1.8.10 (Das and Pramanik, 2021)blank

Let τNT
i , τNT

j , and τNT
k be any three NTs on X . Then the quadruple

(X , τNT
i , τNT

j , τNT
k ) is said to be a neutrosophic tritopological space.

Proposition 1.8.1 (Salama and Alblowi, 2012)blank

For any NS ANT the following conditions are holds

(i) 0NT ⊆ ANT , 0NT ⊆ 0NT .

(ii) ANT ⊆ 1NT , 1NT ⊆ 1NT .

1.9 Neutrosophic Crisp Set and Neutrosophic Crisp Topo-
logical Space

Definition 1.9.1 (Salama, 2013)blank

Let X be a non-empty fixed set. A neutrosophic crisp set (NCrS) A is

an object having the form A = ⟨A1, A2, A3⟩, where A1, A2, and A3 are

subsets of X satisfying A1 ∩ A2 = ϕ, A1 ∩ A3 = ϕ, and A2 ∩ A3 = ϕ.

Remark 1.9.1 (Salama, 2013)blank

A NCrS A = ⟨A1, A2, A3⟩ can be identified as an ordered triple ⟨A1, A2, A3⟩,
where A1, A2, and A3 are subsets of X .
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Definition 1.9.2 (Salama, 2013)blank

ϕN may be defined in many ways as a NCrS as follows:

(i) ϕN = ⟨ϕ, ϕ,X ⟩.

(ii) ϕN = ⟨ϕ,X ,X ⟩.

(iii) ϕN = ⟨ϕ,X , ϕ⟩.

(iv) ϕN = ⟨ϕ, ϕ, ϕ⟩.

XN may also be defined in many ways as a NCrS as follows:

(i) XN = ⟨X , ϕ, ϕ⟩.

(ii) XN = ⟨X ,X , ϕ⟩.

(iii) XN = ⟨X ,X ,X ⟩.

Definition 1.9.3 (Salama, 2013)blank

Let A = ⟨A1, A2, A3⟩ be a NCrS on X , then the complement Ac of the

set A may be defined in three different ways

(i) Ac = ⟨Ac
1, A

c
2, A

c
3⟩.

(ii) Ac = ⟨A3, A2, A1⟩.

(iii) Ac = ⟨A3, A
c
2, A1⟩.

Definition 1.9.4 (Salama, 2013)blank

Let X be a non-empty set, and the NCrSs A and B be in the form A =

⟨A1, A2, A3⟩, B = ⟨B1, B2, B3⟩ respectively. Then the following two

possible definitions may be considered for subsets (A ⊆ B):

A ⊆ B ⇐⇒ A1 ⊆ B1, A1 ⊆ B2, and A3 ⊇ B3, or

A ⊆ B ⇐⇒ A1 ⊆ B1, A2 ⊇ B2, and A3 ⊇ B3.

Definition 1.9.5 (Salama, 2013)blank

Let X is a non-empty set, and the NCrSs A and B be in the form A =

⟨A1, A2, A3⟩ and B = ⟨B1, B2, B3⟩ respectively. Then,
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(i) A ∩B may be defined in two ways:

A ∩B = ⟨A1 ∩B1, A2 ∩B2, A3 ∪B3⟩, or

A ∩B = ⟨A1 ∩B1, A2 ∪B2, A3 ∪B3⟩.

(ii) A ∪B may also be defined in two ways:

A ∪B = ⟨A1 ∪B1, A2 ∩B2, A3 ∩B3⟩, or

A ∪B = ⟨A1 ∪B1, A2 ∪B2, A3 ∩B3⟩.

Definition 1.9.6 (Salama, 2013)blank

A neutrosophic crisp topology (NCrT) on a non-empty set X is a family

τNC of neutrosophic crisp subsets in X satisfying the following axioms

(i) ϕN, XN ∈ τNC .

(ii) A1 ∩ A2 ∈ τNC; for any A1, A2 ∈ τNC .

(iii) ∪Aj ∈ τNC; ∀{Aj : j ∈ J} ⊆ τNC .

In this case, the pair (X , τNC) is called a neutrosophic crisp topologi-

cal space (NCrTS) in X . The elements in τNC are called neutrosophic

crisp open sets (NCrOSs) in X . A NCrS F is closed if and only if its

complement F c is an open NCrS.

Remark 1.9.2 (Salama, 2013)blank

The NCrTSs are very natural generalizations of topological spaces and

intuitionistic topological spaces.

Proposition 1.9.1 (Salama, 2013)blank

For any NCrS A the following are hold:

(i) ϕN ⊆ A, ϕN ⊆ ϕN.

(ii) A ⊆ XN, XN ⊆ XN.

Proposition 1.9.2 (Salama, 2013)blank

For any two NCrSs A and B on X , the followings are true
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(i) (A ∩B)c = Ac ∪Bc.

(ii) (A ∪B)c = Ac ∩Bc.

Proposition 1.9.3 (Salama, 2013)blank

Let {Aj : j ∈ J} be arbitrary family of neutrosophic crisp subsets in X .

Then,

(i) ∩Aj may be defined as the following types:

∩Aj = ⟨∩Aj1,∩Aj2,∪Aj3⟩,
∩Aj = ⟨∩Aj1,∪Aj2,∪Aj3⟩.

(ii) ∪Aj may be defined as the following types:

∪Aj = ⟨∪Aj1,∩Aj2,∩Aj3⟩,
∪Aj = ⟨∪Aj1,∪Aj2,∩Aj3⟩.

1.10 Tools for Counting Methods

This section presents some known definitions and results in the area of

combinatorics to deal with our main results.

Definition 1.10.1 (Cameron, 1994)blank

The number of m-element subsets of an n-element set (that is, the number

of ways we could select m-distinct elements from an n-element set) is

called a binomial number or a binomial coefficient, denoted by
(
n
i

)
.

Some of its the most important basic properties are as follows:

(i)
(
n
0

)
=
(
n
n

)
= 1.

(ii)
(
n
1

)
=
(

n
n−1

)
= n.

(iii)
(
n
m

)
=
(

n
n−m

)
, 0 ≤ m ≤ n.

(iv)
(
n
m

)
=
(
n−1
m

)
+
(
n−1
m−1

)
, 1 ≤ m < n.

(v)
∑n

i=1 i =
n(n+1)

2 .
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(vi)
∑n

i=1

∑i
j=1 j =

n(n+1)(n+2)
6 .

Lemma 1.10.1 (Cameron, 1994)blank

For n ≥ m ≥ 0, (
n

m

)
=

n!

m!(n−m)!

with the convention that
(
n
m

)
= 0, for any m > n.

Theorem 1.10.1 (Cameron, 1994)blank

For any integer n ≥ 0,

(a+ b)n =
n∑

m=0

(
n

m

)
ambn−m.

22


