
CHAPTER 5

Number of Neutrosophic Crisp Topological Spaces
on a Finite Set

In Chapter 2, the formula to find the number of neutrosophic crisp subsets

in a nonempty finite set X has been obtained, and some propositions are

also explored. The present chapter aims to find formulae to compute the

number of neutrosophic crisp topological spaces having 2-NCrOSs, 3-

NCrOSs, and 4-NCrOSs.

Remark 5.0.1 (Salama, 2013)blank

Let A = ⟨A1,A2,A3⟩ and B = ⟨B1,B2,B3⟩ be any two neutrosophic

crisp sets on X (Using Definition 1.9.1). To perform intersection and

union on A and B, the following operations has been taken

(i) A ∩ B = ⟨A1 ∩ B1,A2 ∩ B2,A3 ∪ B3⟩,
(ii) A ∪ B = ⟨A1 ∪ B1,A2 ∩ B2,A3 ∩ B3⟩.

Definition 5.0.1 blank

A NCrT having k-NCrOSs on a non-empty set X is said to be a NCrT of

cardinality k. The number of NCrTs of cardinality k on X with |X | = n

will be denoted by TCr(n, k).
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Example 5.0.1 blank

Let X = {u, v, w} and A1 = ⟨∅, ∅, {u}⟩, then τNCr = {ϕN,XN,A1}
form a NCrT on X . So, τNCr is a NCrT of cardinality 3 as it has 3-

NCrOSs.

5.1 Neutrosophic Crisp Topological Spaces with 2-NCrOSs

Proposition 5.1.1 blank

For a non-empty finite set X with |X | = n,

(a) TCr(n, 2) = 1,

(b) TCr(n, k) = 1, where k = |PNCr(X )|.

Proof:

(a) The NCrT having 2-NCrOSs is the indiscrete NCrT which is TN =

{ϕN,XN}. Therefore, (X ,TN) is the only NCrTS having 2-NCrOSs

as TN contains only two members ϕN and XN. Hence, the num-

ber of neutrosophic crisp topological spaces (NCrTSs) having 2-

NCrOSs is 1 i.e., TCr(n, 2) = 1.

(b) The NCrT of cardinality k = |PNCr(X )| is the discrete NCrT

only. Hence, TCr(n, k) = 1, for k = |PNCr(X )|.

Example 5.1.1 blank

Let X = {u, v}, then, |X | = n = 2. Here, the neutrosophic crisp sub-

sets on X are

ϕN, XN, A1 = ⟨∅, ∅, {u}⟩, A2 = ⟨∅, {u}, ∅⟩, A3 = ⟨{u}, ∅, ∅⟩,
A4 = ⟨∅, ∅, {v}⟩, A5 = ⟨∅, {v}, ∅⟩, A6 = ⟨{v}, ∅, ∅⟩,
A7 = ⟨∅, {u}, {v}⟩, A8 = ⟨{u}, ∅, {v}⟩, A9 = ⟨{u}, {v}, ∅⟩,
A10 = ⟨∅, {v}, {u}⟩, A11 = ⟨{v}, ∅, {u}⟩, A12 = ⟨{v}, {u}, ∅⟩.

In this case, the only NCrT having 2-NCrOSs is {ϕN,XN} and hence

TCr(n, 2) = 1.
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Also, the NCrT having k = |PNCr(X )| = 14-NCrOSs is

{ϕN,XN,A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12} and hence,

TCr(n, k) = 1, for k = |PNCr(X )| = 14.

5.2 Neutrosophic Crisp Topological Spaces with 3-NCrOSs

Proposition 5.2.1 blank

The number of NCrTs of cardinality 3 on a non-empty finite set X with

|X | = n is given by the formula

TCr(n, 3) = |PNCr(X )| − 2

= 3(2n − 2) + 3!
[∑n

i=2S(i, 2)
(
n
i

)
+
∑n

j=3S(j, 3)
(
n
j

)]
.

Proof:
The NCrTs having 3-NCrOSs necessarily consists of a chain containing

ϕN,XN and any other neutrosophic crisp subset AN of X other than

ϕN and XN. Clearly, ϕN ⊂ AN ⊂ XN. It is observed that the number

of such AN is equal to |PNCr (X ) | − 2. Since the set {ϕN,AN,XN}
form a NCrT and the total number of such NCrTs is |PNCr(X )| − 2.

Now, |PNCr(X )| = (3.2n−4)+3!
{∑n

i=2S(i, 2)
(
n
i

)
+
∑n

j=3S(j, 3)
(
n
j

)}
.

Therefore,

|PNCr(X )|−2 =
[
(3.2n − 4) + 3!

{∑n
i=2S(i, 2)

(
n
i

)
+
∑n

j=3S(j, 3)
(
n
j

)}]
− 2

= (3.2n−6)+3!
{∑n

i=2S(i, 2)
(
n
i

)
+
∑n

j=3S(j, 3)
(
n
j

)}
= 3(2n−2)+3!

{∑n
i=2S(i, 2)

(
n
i

)
+
∑n

j=3S(j, 3)
(
n
j

)}
.

Hence,

TCr(n, 3) = |PNCr(X )| − 2

= 3(2n − 2) + 3!
[∑n

i=2S(i, 2)
(
n
i

)
+
∑n

j=3S(j, 3)
(
n
j

)]
.

Example 5.2.1 blank

Let X = {u, v}, then

TCr(2, 3) = 3(22 − 2) + 3!
{∑2

i=2S(i, 2)
(
2
i

)
+
∑2

j=3S(j, 3)
(
2
j

)}
.
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Clearly,
∑2

j=3S(j, 3)
(
2
j

)
= 0.

So, TCr(2, 3) = 6 + 6
{
S(2, 2)

(
2
2

)
+ 0
}
= 12.

Consequently, TCr(2, 3) = 12 and these NCrTs having 3-NCrOSs are

listed below

{ϕN,A1,XN}, {ϕN,A2,XN},{ϕN,A3,XN}, {ϕN,A4,XN},

{ϕN,A5,XN},{ϕN,A6,XN}, {ϕN,A7,XN}, {ϕN,A8,XN},

{ϕN,A9,XN}, {ϕN,A10,XN}, {ϕN,A11,XN},{ϕN,A12,XN}.

5.3 Neutrosophic Crisp Topological Spaces with 4-NCrOSs

The NCrT having 4-NCrOSs must have the form T = {ϕN,A ,B,XN},

where A ̸= B such that A ∩ B,A ∪ B ∈ T . To compute the number

of NCrTs with exactly 4-NCrOSs, we need to compute formulae for fol-

lowing cases:

Case 1: A ∩ B = ϕN,A ∪ B = XN

Case 2: A ∩ B = ϕN, A ∪ B = ϕN

Case 3: (A ∩ B = A or B, A ∪ B = ϕN) or

(A ∩ B = ϕN,A ∪ B = A or B)

Case 4: (A ∩ B = A ,A ∪ B = A ) or (A ∩ B = B,A ∪ B = B)

Case 5: (A ∩ B = A ,A ∪ B = B) or (A ∩ B = B,A ∪ B = A ).

Proposition 5.3.1 blank

For a non-empty finite set X with |X | = n, the number of NCrTs having

4-NCrOSs satisfying the condition in case 1 is obtained by the formula

S(n, 2)(2n + 1).

Proof:
In general, the number of partitions of a non-empty set X with |X | =
n into two blocks is given by S(n, 2). To obtain A ∩ B = ϕN and

A ∪ B = XN, clearly A and B must have the following two forms:

(i) A = ⟨A1,A2, ∅⟩ & B = ⟨B1,B2, ∅⟩,
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(ii) A = ⟨A1, ∅,A3⟩ & B = ⟨B1, ∅,B3⟩.

Let us count the ways that they can be chosen.

(i) We have, A ∩ B = ⟨A1 ∩ B1,A2 ∩ B2, ∅⟩, and A ∪ B = ⟨A1 ∪
B1,A2∩B2, ∅⟩. Now, to get A ∩B = ϕN and A ∪B = XN, we

must have, A1∩B1 = ∅, A1∪B1 = X and A2∩B2 = ∅. This im-

plies that A1, B1 is a partition of X and so, B1 = X −A1. There-

fore, A1, B1 can be chosen in S(n, 2) ways. Now, if |A1| = i then

|B1| = n−i. Since A2∩B2 = ∅, then the neutrosophic crisp subset

A2 can be chosen out of n−i elements in
(
n−i
k

)
, k = 0, 1, 2, . . . , n−i

ways with k = 0 representing the empty set. Therefore, A2 can be

chosen in
∑n−i

k=0

(
n−i
k

)
= 2n−i ways. Similarly, B2 can be chosen

out of n− (n− i) = i elements in
∑i

k=0

(
i
k

)
= 2i ways. Hence, the

total number of ways is S(n, 2).2n−i.2i = S(n, 2).2n.

(ii) We have, A ∩ B = ⟨A1 ∩ B1, ∅,A3 ∪ B3⟩, and A ∪ B = ⟨A1 ∪
B1, ∅,A3 ∩ B3⟩. Now, to get A ∩ B = ϕN and A ∪ B = XN,

we must have, A1 ∩ B1 = ∅, A3 ∪ B3 = X and A1 ∪ B1 = X ,

A3 ∩ B3 = ∅ simultaneously. This shows that A1 and B1 is a

partition of X and A3 = A C
1 = B1, B3 = BC

1 = A1. Therefore,

we can take A1 and B1 or A3 and B3 in S(n, 2) ways.

From (i) and (ii), the total number of ways is S(n, 2)(2n + 1).

Hence, the number of NCrTs having 4-NCrOSs satisfying the condi-

tion in case 1 is obtained by the formula

S(n, 2)(2n + 1).

Proposition 5.3.2 blank

The number of NCrTs having 4-NCrOSs on a non-empty set X satisfying

the condition in case 2 is obtained by the formula
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n(n− 1)

2
+ {S(n, 2)× 2n}+

n∑
i=3

{(
n

i

)
S(i, 2)

}
where |X | = n.

Proof:
To obtain A ∩B = ϕN and A ∪B = ϕN, clearly, A and B must have

the following two forms

(i) A = ⟨∅,A2,A3⟩ & B = ⟨∅,B2,B3⟩ such that A3 ∪ B3 = X and

A3 ∩ B3 = ∅ and A2 ∩ B2 = ∅.

(ii) A = ⟨∅,A2, ∅⟩ & B = ⟨∅,B2, ∅⟩ such that A2 ∩ B2 = ∅.

From (i), A ∩ B = ⟨∅,A2 ∩ B2,A3 ∪ B3⟩, and A ∪ B = ⟨∅,A2 ∩
B2,A3∩B3⟩. Since, A3∪B3 = X and A3∩B3 = ∅, which implies that

A3 and B3 is a partition of X and say B3 = X −A3. Therefore, A3 and

B3 can be chosen in S(n, 2) ways. Now, if |A3| = i, |B3| = n− i, 1 ≤
i ≤ n−1, and A2∩B2 = ∅, then A2 can be chosen in

∑n−i
k=0

(
n−i
k

)
= 2n−i

ways, and similarly, B2 can be chosen out of n − (n − i) = i elements

in
∑i

k=0

(
i
k

)
= 2i ways.

Therefore, the total number of ways isS(n, 2)×2n−i×2i i.e.,S(n, 2)×
2n.

From (ii), A ∩ B = ⟨∅,A2 ∩ B2, ∅⟩, A ∪ B = ⟨∅,A2 ∩ B2, ∅⟩, and

A2 ∩ B2 = ∅. If |A2 ∪ B2| = i, 2 ≤ i ≤ n, then A2 ∪ B2 is chosen in(
n
i

)
different ways and then it is partitioned into two disjoint blocks: this

is done in S(i, 2) different ways. Therefore, the number of ways for form

(ii) is
∑n

i=2

(
n
i

)
S(i, 2).

Hence, the number of NCrTs having 4-NCrOSs satisfying condition

in case 2 is obtained by the formula

{S(n, 2)× 2n}+
n∑

i=2

{(
n

i

)
S(i, 2)

}

110



i.e.,
n(n− 1)

2
+ {S(n, 2)× 2n}+

n∑
i=3

{(
n

i

)
S(i, 2)

}
.

Proposition 5.3.3 blank

For a non-empty finite set X with |X | = n, the number of NCrTs hav-

ing 4-NCrOSs satsifying conditions in case 3 is obtained by the formula

2(2n − 2)2.

Proof:
There are two forms

(i) A = ⟨∅, ∅,A3⟩ & B = ⟨∅,B2, ∅⟩,
(ii) A = ⟨A1, ∅, ∅⟩ & B = ⟨∅,B2, ∅⟩.

Let us count the ways that they can be chosen.

Clearly, these two forms agree with the conditions in case 3, i.e., for

the first kind, we have, A ∩ B = ⟨∅, ∅,A3⟩ = A and A ∪ B =

⟨∅, ∅, ∅⟩ = ϕN, and for the second kind A ∩ B = ⟨∅, ∅, ∅⟩ = ϕN

and A ∪ B = ⟨A1, ∅, ∅⟩ = A . Now, since ∅ ⊂ A3 ⊂ X , ∅ ⊂
B2 ⊂ X such that |A3| = |B2| = i, 1 ≤ i ≤ n − 1 so, A3 and B2

are chosen in
(
n
i

)
different ways. This implies that A and B are cho-

sen in
(
n
i

)
different ways. Therefore, the number of ways in this kind is{∑n−1

i=1

(
n
i

)}
×
{∑n−1

i=1

(
n
i

)}
=
(∑n−1

i=1

(
n
i

))2
= (2n − 2)2.

Similarly, the second kind is computed and is equal to (2n − 2)2.

Finally, the desired number of ways is 2 (2n − 2)2 .

Proposition 5.3.4 blank

For a non-empty set X with |X | = n, the number of NCrTs having

4-NCrOSs satisfying condition in case 4 is obtained by the formula

n−2∑
i=1

{(
n

i

)(
2n−i − 2

)}
+ 2T1 + 6 (T2 +T3) ,

where Tk =
∑n−1

i=k

{(
n
i

)
S(i, k)

(
2n−i − 1

)}
, k = 1, 2, 3.

111



Proof:
Let A = ⟨A1,A2,A3⟩ and B = ⟨B1,B2,B3⟩. Then to satisfy the

condition (A ∩B = A ,A ∪B = A ) or (A ∩B = B,A ∪B = B),

we must have, A1 = B1,A2 ⊂ B2,A3 = B3 or A1 = B1,B2 ⊂
A2,A3 = B3 respectively . Then, we obtain four forms

(i) A = ⟨∅,A2, ∅⟩ & B = ⟨∅,B2, ∅, ⟩ such that A2 ⊂ B2 or B2 ⊂ A2,

(ii) A = ⟨∅, ∅,A3⟩ & B = ⟨∅,B2,A3⟩ and A = ⟨A1, ∅, ∅⟩ & B =

⟨A1,B2, ∅⟩,

(iii) A = ⟨A1,A2,A3⟩ & B = ⟨A1,B2,A3⟩; exactly one of Ai, i =

1, 2, 3 is ∅ and A2 ⊂ B2.

(iv) A = ⟨A1,A2,A3⟩ & B = ⟨A1,B2,A3⟩ such that all Ai, i = 1, 2, 3

are non-empty and A2 ⊂ B2.

Let us count the ways that they can be chosen.

(i) Let A2 ⊂ B2 and if |A2| = i, 1 ≤ i ≤ n − 2 then i < |B2| =
k ≤ n − 1. Therefore, A2 is chosen in

(
n
i

)
ways and B2 is chosen

in
∑(n−i)−1

j=1

(
n−i
j

)
= 2n−i − 2 different ways. Since, i varies from 1

to n− 2, A2 and B2 are chosen in
∑n−2

i=1

{(
n
i

) (
2n−i − 2

)}
different

ways. Hence, the neutrosophic crisp subsets A and B are chosen

in
∑n−2

i=1

{(
n
i

) (
2n−i − 2

)}
different ways.

(ii) Let |A3| = i, 1 ≤ i ≤ n − 1 then A3 is chosen in
(
n
i

)
different

ways then it is partitioned into one block: this is done in S(i, 1)

different ways and hence A . Next, in B, A3 ∩ B2 = ∅ and so,

B2 is chosen from n− i elements in
∑n−i

j=1

(
n−i
j

)
= 2n−i − 1 differ-

ent ways and hence B. Since i varies from 1 to n − 1, we obtain∑n−1
i=1

(
n
i

)
S(i, 1)(2n−i − 1) different ways for A and B.

Similarly, for A = ⟨A1, ∅, ∅⟩ & B = ⟨A1,B2, ∅⟩, we have∑n−1
i=1

(
n
i

)
S(i, 1)(2n−i − 1) different ways.
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(iii) We have, A1∩A3 = ∅. If |A1∪A3| = i, 2 ≤ i ≤ n−1 then A1,A3 is

chosen in
(
n
i

)
S(i, 2) different ways. Since A1∩B2 = A3∩B2 = ∅,

so, B2 is chosen in
(
n−i
j

)
, 1 ≤ j ≤ n− i different ways. Therefore,

B2 is chosen in
∑n−i

j=1

(
n−i
j

)
= 2n−i − 1 different ways. Together

A and B is chosen in
∑n−1

i=2

(
n
i

)
S(i, 2)(2n−i − 1) different ways. It

is known that we can arrange three element into three places in six

different ways, so, A has six forms, as three components of A are

the neutrosophic crisp subsets A1,A3 and ∅.

Hence, the total number of ways to choose A and B is

6
n−1∑
i=2

(
n

i

)
S(i, 2)(2n−i − 1).

(iv) We have, A1 ∩ A2 = A1 ∩ A3 = A2 ∩ A3 = ∅. If |A1 ∪ A2 ∪
A3| = i, 3 ≤ i ≤ n − 1 then A1,A2,A3 are chosen in

(
n
i

)
S(i, 3)

different ways. Since A1 ∩ B2 = A3 ∩ B2 = ∅, so, B2 is chosen

in
(
n−i
j

)
, 1 ≤ j ≤ n − i different ways. Therefore, B2 is chosen

in
∑n−i

j=1

(
n−i
j

)
= 2n−i − 1 different ways. Together A and B are

chosen in
∑n−1

i=3

(
n
i

)
S(i, 3)2n−i − 1 different ways. It is known that

we can arrange three elements into the three places in six different

ways, so, A has 6 forms, as three components of A are different

neutrosophic crisp subsets A1,A2 and A3.

Hence, the total number of ways to choose A and B is

6
n−1∑
i=3

(
n

i

)
S(i, 3)(2n−i − 1).

Hence, we have the total

n−2∑
i=1

{(
n

i

)(
2n−i − 2

)}
+

n−1∑
i=1

(
n

i

)
S(i, 1)(2n−i − 1)+
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6
n−1∑
i=2

(
n

i

)
S(i, 2)(2n−i − 1) + 6

n−1∑
i=3

(
n

i

)
S(i, 3)(2n−i − 1).

i.e.,
n−2∑
i=1

{(
n

i

)(
2n−i − 2

)}
+ 2T1 + 6 (T2 +T3) ,

where Tk =
∑n−1

i=k

{(
n
i

)
S(i, k)

(
2n−i − 1

)}
, k = 1, 2, 3. This formula

gives the number of NCrTs having 4-NCrOSs satisfying condition in case

4.

Proposition 5.3.5 blank

For a non-empty set X with |X | = n, the number of NCrTs having

4-NCrOSs satisfying condition in case 5 is obtained by the formula

n−1∑
i=1

(
n

i

)[
(2n − 2) + 2

{(
i−1∑
j=1

(
i

j

)
2n−j

)
+ (2n−i − 1)

}]
+

2
n−1∑
i=1

(
n

i

)
(2n−i − 1) +

n−1∑
i=1

(
n

i

)
(2n−i − 1)2 + 2Tn +

n−2∑
i=0

(
n

i

)
Tn−i,

where Tn =
∑n−2

i=1

(
n
i

){∑n−(i+1)
k=1

(
n−i
k

)
(2n−(i+k) − 1)

}
+∑n−2

i=1

(
n
i

) [∑n−i
j=1

(
n−i
j

){∑j
k=1

(
j
k

)
(2n−(i+j) − 1)

}]
or

Tn =
∑n−2

i=1

(
n
i

){∑n−(i+1)
k=1

(
n−i
k

)
(2n−(i+k) − 1)

}
+∑n−2

i=1

(
n
i

) [∑n−i
j=1

{∑n−i
k=j

(
n−i
j

)(
j
k

)}
(2n−(i+j) − 1)

]
.

Proof:
Here, the second component must always match to satisfy the conditions

in case 5.

For A = ⟨∅, ∅,A3⟩ we can choose B in two forms which are B =

⟨B1, ∅, ∅⟩ and B = ⟨B1, ∅,B3⟩ such that B3 ⊆ A3. For this kind of A

we have
(
n
i

)
different ways. For each A , we can choose B = ⟨B1, ∅, ∅⟩

in 2n − 2 different ways. Next if B3 ⊂ A3, say |B3| = j < i = |A3|,
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we can choose B in
∑i−1

j=1

(
i
j

)
2n−j different ways and if B3 = A3, say

|B3| = |A3| = i, then B can be chosen in 2n−i − 1 different ways.

Similarly, for A = ⟨A1, ∅, ∅⟩, we have same number of choices for B

satisfying conditions in case 5.

Therefore, in this part we have

n−1∑
i=1

(
n

i

)[
(2n − 2) + 2

{(
i−1∑
j=1

(
i

j

)
2n−j

)
+ (2n−i − 1)

}]

different ways.

For A = ⟨∅,A2, ∅⟩, we can choose B = ⟨∅,A2,B3⟩ and B =

⟨B1,A2, ∅⟩. Since A2 can be chosen in
(
n
i

)
, i = 1, 2, . . . , n − 1 dif-

ferent ways then B3 can be chosen in 2n−i − 1 different ways for each i

and therefore, B. As we have two forms of B and are symmetric, and i

varies from 1 to n− 1, we have the total 2
∑n−1

i=1

(
n
i

)
(2n−i − 1).

For A = ⟨∅,A2,A3⟩, we can choose B = ⟨B1,A2,B3⟩,A3 ⊆ B3

and B1 is any subset of X different from A2 and B3. Then A and B

can be chosen in
∑n−2

i=1

(
n
i

){∑n−(i+1)
k=1

(
n−i
k

)
(2n−(i+k) − 1)

}
+∑n−2

i=1

(
n
i

) [∑n−i
j=1

(
n−i
j

){∑j
k=1

(
j
k

)
(2n−(i+j) − 1)

}]
different ways. Let

us take
∑n−2

i=1

(
n
i

){∑n−(i+1)
k=1

(
n−i
k

)
(2n−(i+k) − 1)

}
+∑n−2

i=1

(
n
i

) [∑n−i
j=1

(
n−i
j

){∑j
k=1

(
j
k

)
(2n−(i+j) − 1)

}]
= Tn for further use.

Also, for A = ⟨A1,A2, ∅⟩, we have equal number of choices as it is

symmetric to A = ⟨∅,A2,A3⟩. Hence, a total of 2Tn different ways.

For A = ⟨∅,A2,A3⟩, we can also choose B = ⟨B1,A2, ∅⟩ which

can be done in
∑n−1

i=1

(
n
i

)
(2n−i − 1)2 different ways.

For A = ⟨A1,A2,A3⟩, we can choose B = ⟨B1,A2,B3⟩ such that

A1 ⊆ B1, B3 ⊆ A3 and |A2| = i, 0 ≤ i ≤ n−2. If |A2| = 0 i.e., A2 = ∅
then B can be chosen in

(
n
0

)
Tn different ways. Further, if |A2| = 1 then

B can be chosen in
(
n
1

)
Tn−1 different ways. Continuing in the similar

way for |A2| = n − 2, we have
(

n
n−2

)
Tn−(n−2) i.e.,

(
n

n−2

)
T2 different
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ways. Thus, for A = ⟨A1,A2,A3⟩, we can choose B in
∑n−2

i=0

(
n
i

)
Tn−i

different ways.

Hence, the number of NCrTs having 4-NCrOSs satisfying conditions

in case 5 is obtained by the formula

n−1∑
i=1

(
n

i

)[
(2n − 2) + 2

{(
i−1∑
j=1

(
i

j

)
2n−j

)
+ (2n−i − 1)

}]
+

2
n−1∑
i=1

(
n

i

)
(2n−i − 1) +

n−1∑
i=1

(
n

i

)
(2n−i − 1)2 + 2Tn +

n−2∑
i=0

(
n

i

)
Tn−i.

Example 5.3.1 blank

The follwing table gives the number of NCrTs having 4-NCrOSs for X ≤
5.

Table 5.1: Number of NCrTSs having 4-NCrOSs on X

A ∩ B,A ∪ B
Number of NCrTSs having 4-NCrOSs on X

|X | = 1 |X | = 2 |X | = 3 |X | = 4 |X | = 5
Case 1: A ∩ B = ϕN,
A ∪ B = XN

0 5 27 119 495

Case 2: A ∩ B = ϕN,
A ∪ B = ϕN

0 5 30 137 570

Case 3: A ∩ B = A ,
A ∪ B = ϕN

0 8 72 392 1800

Case 4: A ∩ B = A ,
A ∪ B = A

0 4 48 340 2040

Case 5: A ∩ B = A ,
A ∪ B = B

0 14 216 1958 15240

The total number of
NCrTSs having 4-
NCrOSs on X

0 36 393 2946 20145

Suppose, X = {a, b} i.e., |X | = 2, then from Table 5.1, we have,

TCr(2, 4) = 36. These are

For Case 1:

{ϕN,XN, A3 = ⟨{a}, ∅, ∅⟩, A6 = ⟨{b}, ∅, ∅},

{ϕN,XN, A3 = ⟨{a}, ∅, ∅, A12 = ⟨{b}, {a}, ∅⟩},

{ϕN,XN, A6 = ⟨{b}, ∅, ∅⟩, A9 = ⟨{a}, {b}, ∅⟩},
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{ϕN,XN, A8 = ⟨{a}, ∅, {b}⟩, A11 = ⟨{b}, ∅, {a}⟩},

{ϕN,XN, A9 = ⟨{a}, {b}, ∅⟩, A12 = ⟨{b}, {a}, ∅⟩}.

For Case 2:

{ϕN,XN, A2 = ⟨∅, {a}, ∅⟩, A5 = ⟨∅, {b}, ∅⟩},

{ϕN,XN, A1 = ⟨∅, ∅, {a}⟩, A4 = ⟨∅, ∅, {b}⟩},

{ϕN,XN, A1 = ⟨∅, ∅, {a}⟩, A7 = ⟨∅, {a}, {b}⟩},

{ϕN,XN, A4 = ⟨∅, ∅, {b}⟩, A10 = ⟨∅, {b}, {a}⟩},

{ϕN,XN, A7 = ⟨∅, {a}, {b}⟩, A10 = ⟨∅, {b}, {a}⟩}.

For Case 3:

{ϕN,XN, A1 = ⟨∅, ∅, {a}⟩, A2 = ⟨∅, {a}, ∅⟩},

{ϕN,XN, A1 = ⟨∅, ∅, {a}⟩, A5 = ⟨∅, {b}, ∅⟩},

{ϕN,XN, A4 = ⟨∅, ∅, {b}⟩, A2 = ⟨∅, {a}, ∅⟩},

{ϕN,XN, A4 = ⟨∅, ∅, {b}⟩, A5 = ⟨∅, {b}, ∅⟩},

{ϕN,XN, A3 = ⟨{a}, ∅, ∅⟩, A2 = ⟨∅, {a}, ∅⟩},

{ϕN,XN, A3 = ⟨{a}, ∅, ∅⟩, A5 = ⟨∅, {b}, ∅⟩},

{ϕN,XN, A6 = ⟨{b}, ∅, ∅⟩, A2 = ⟨∅, {a}, ∅⟩},

{ϕN,XN, A6 = ⟨{b}, ∅, ∅⟩, A5 = ⟨∅, {b}, ∅⟩}.

For Case 4:

{ϕN,XN, A1 = ⟨∅, ∅, {a}⟩, A10 = ⟨∅, {b}, {a}⟩},

{ϕN,XN, A3 = ⟨{a}, ∅, ∅⟩, A9 = ⟨{a}, {b}, ∅⟩},

{ϕN,XN, A4 = ⟨∅, ∅, {b}⟩, A7 = ⟨∅, {a}, {b}⟩},

{ϕN,XN, A6 = ⟨{b}, ∅, ∅⟩, A12 = ⟨{b}, {a}, ∅⟩}.

For Case 5:

{ϕN,XN, A1 = ⟨∅, ∅, {a}⟩, A3 = ⟨{a}, ∅, ∅⟩},

{ϕN,XN, A1 = ⟨∅, ∅, {a}⟩, A6 = ⟨{b}, ∅, ∅⟩},

{ϕN,XN, A4 = ⟨∅, ∅, {b}⟩, A3 = {a}, ∅, ∅⟩},

{ϕN,XN, A4 = ⟨∅, ∅, {b}⟩, A6 = ⟨{b}, ∅, ∅⟩},

{ϕN,XN, A7 = ⟨∅, {a}, {b}⟩, A2 = ⟨∅, {a}, ∅⟩},

{ϕN,XN, A7 = ⟨∅, {a}, {b}⟩, A12 = ⟨{b}, {a}, ∅⟩},

{ϕN,XN, A12 = ⟨{b}, {a}, ∅⟩, A2 = ⟨∅, {a}, ∅⟩},
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{ϕN,XN, A9 = ⟨{a}, {b}, ∅⟩, A5 = ⟨∅, {b}, ∅⟩},

{ϕN,XN, A9 = ⟨{a}, {b}, ∅⟩, A10 = ⟨∅, {b}, {a}⟩},

{ϕN,XN, A10 = ⟨∅, {b}, {a}⟩, A5 = ⟨∅, {b}, ∅⟩},

{ϕN,XN, A8 = ⟨{a}, ∅, {b}⟩, A3 = ⟨{a}, ∅, ∅⟩},

{ϕN,XN, A8 = ⟨{a}, ∅, {b}⟩, A4 = ⟨∅, ∅, {b}⟩},

{ϕN,XN, A11 = ⟨{b}, ∅, {a}⟩, A1 = ⟨∅, ∅, {a}⟩},

{ϕN,XN, A11 = ⟨{b}, ∅, {a}⟩, A6 = ⟨{b}, ∅, ∅⟩}.

As a result, we have the total TCr(2, 4) = 36.
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