CHAPTER 5

Number of Neutrosophic Crisp Topological Spaces on a Finite Set

In Chapter 2, the formula to find the number of neutrosophic crisp subsets in a nonempty finite set \mathscr{X} has been obtained, and some propositions are also explored. The present chapter aims to find formulae to compute the number of neutrosophic crisp topological spaces having 2-NCrOSs, 3-NCrOSs, and 4-NCrOSs.

Remark 5.0.1 (Salama, 2013)

Let $\mathscr{A} = \langle \mathscr{A}_1, \mathscr{A}_2, \mathscr{A}_3 \rangle$ and $\mathscr{B} = \langle \mathscr{B}_1, \mathscr{B}_2, \mathscr{B}_3 \rangle$ be any two neutrosophic crisp sets on \mathscr{X} (Using Definition 1.9.1). To perform intersection and union on \mathscr{A} and \mathscr{B} , the following operations has been taken

 $(i) \, \mathscr{A} \cap \mathscr{B} = \langle \mathscr{A}_1 \cap \mathscr{B}_1, \mathscr{A}_2 \cap \mathscr{B}_2, \mathscr{A}_3 \cup \mathscr{B}_3 \rangle,$

 $(ii) \mathscr{A} \cup \mathscr{B} = \langle \mathscr{A}_1 \cup \mathscr{B}_1, \mathscr{A}_2 \cap \mathscr{B}_2, \mathscr{A}_3 \cap \mathscr{B}_3 \rangle.$

Definition 5.0.1

A NCrT having k-NCrOSs on a non-empty set \mathscr{X} is said to be a NCrT of cardinality k. The number of NCrTs of cardinality k on \mathscr{X} with $|\mathscr{X}| = n$ will be denoted by $\mathcal{T}_{\mathscr{C}r}(n,k)$.

Example 5.0.1

Let $\mathscr{X} = \{u, v, w\}$ and $\mathscr{A}_1 = \langle \emptyset, \emptyset, \{u\} \rangle$, then $\tau^{NCr} = \{\phi_{\mathscr{N}}, \mathscr{X}_{\mathscr{N}}, \mathscr{A}_1\}$ form a NCrT on \mathscr{X} . So, τ^{NCr} is a NCrT of cardinality 3 as it has 3-NCrOSs.

5.1 Neutrosophic Crisp Topological Spaces with 2-NCrOSs

Proposition 5.1.1

For a non-empty finite set \mathscr{X} with $|\mathscr{X}| = n$,

- (a) $\mathcal{T}_{\mathscr{C}r}(n,2) = 1$,
- (b) $\mathcal{T}_{\mathscr{C}r}(n,k) = 1$, where $k = |\mathscr{P}_{\mathscr{N}\mathscr{C}r}(\mathscr{X})|$.

Proof:

- (a) The NCrT having 2-NCrOSs is the indiscrete NCrT which is *T_N* = {φ_N, *X_N*}. Therefore, (*X*, *T_N*) is the only NCrTS having 2-NCrOSs as *T_N* contains only two members φ_N and *X_N*. Hence, the number of neutrosophic crisp topological spaces (NCrTSs) having 2-NCrOSs is 1 i.e., *T_{Cr}*(n, 2) = 1.
- (b) The NCrT of cardinality $k = |\mathscr{P}_{\mathscr{N}\mathscr{C}r}(\mathscr{X})|$ is the discrete NCrT only. Hence, $\mathscr{T}_{\mathscr{C}r}(n,k) = 1$, for $k = |\mathscr{P}_{\mathscr{N}\mathscr{C}r}(\mathscr{X})|$.

Example 5.1.1

Let $\mathscr{X} = \{u, v\}$, then, $|\mathscr{X}| = n = 2$. Here, the neutrosophic crisp subsets on \mathscr{X} are

$$\begin{split} \phi_{\mathcal{N}}, \, \mathscr{X}_{\mathcal{N}}, \, \mathscr{A}_{1} &= \langle \emptyset, \emptyset, \{u\} \rangle, \, \mathscr{A}_{2} &= \langle \emptyset, \{u\}, \emptyset \rangle, \qquad \mathscr{A}_{3} &= \langle \{u\}, \emptyset, \emptyset \rangle, \\ \mathscr{A}_{4} &= \langle \emptyset, \emptyset, \{v\} \rangle, \qquad \mathscr{A}_{5} &= \langle \emptyset, \{v\}, \emptyset \rangle, \qquad \mathscr{A}_{6} &= \langle \{v\}, \emptyset, \emptyset \rangle, \\ \mathscr{A}_{7} &= \langle \emptyset, \{u\}, \{v\} \rangle, \qquad \mathscr{A}_{8} &= \langle \{u\}, \emptyset, \{v\} \rangle, \qquad \mathscr{A}_{9} &= \langle \{u\}, \{v\}, \emptyset \rangle, \\ \mathscr{A}_{10} &= \langle \emptyset, \{v\}, \{u\} \rangle, \qquad \mathscr{A}_{11} &= \langle \{v\}, \emptyset, \{u\} \rangle, \qquad \mathscr{A}_{12} &= \langle \{v\}, \{u\}, \emptyset \rangle. \\ \end{split}$$
This case, the only NCrT having 2-NCrOSs is $\{\phi_{\mathcal{N}}, \mathscr{X}_{\mathcal{N}}\}$ and hence

In this case, the only NCrT having 2-NCrOSs is $\{\phi_{\mathcal{N}}, \mathscr{X}_{\mathcal{N}}\}$ and hence $\mathcal{T}_{\mathscr{C}r}(n, 2) = 1.$

Also, the NCrT having $k = |\mathscr{P}_{\mathscr{NCr}}(\mathscr{X})| = 14$ -NCrOSs is $\{\phi_{\mathscr{N}}, \mathscr{X}_{\mathscr{N}}, \mathscr{A}_1, \mathscr{A}_2, \mathscr{A}_3, \mathscr{A}_4, \mathscr{A}_5, \mathscr{A}_6, \mathscr{A}_7, \mathscr{A}_8, \mathscr{A}_9, \mathscr{A}_{10}, \mathscr{A}_{11}, \mathscr{A}_{12}\}$ and hence, $\mathcal{T}_{\mathscr{Cr}}(n, k) = 1$, for $k = |\mathscr{P}_{\mathscr{NCr}}(\mathscr{X})| = 14$.

5.2 Neutrosophic Crisp Topological Spaces with 3-NCrOSs

Proposition 5.2.1

The number of NCrTs of cardinality 3 on a non-empty finite set \mathscr{X} with $|\mathscr{X}| = n$ is given by the formula

$$\mathcal{T}_{\mathscr{C}r}(n,3) = |\mathscr{P}_{\mathscr{N}\mathscr{C}r}(\mathscr{X})| - 2$$

= 3(2ⁿ - 2) + 3! $\left[\sum_{i=2}^{n} \mathscr{S}(i,2)\binom{n}{i} + \sum_{j=3}^{n} \mathscr{S}(j,3)\binom{n}{j}\right]$

Proof:

The NCrTs having 3-NCrOSs necessarily consists of a chain containing $\phi_{\mathcal{N}}, \mathscr{X}_{\mathcal{N}}$ and any other neutrosophic crisp subset $\mathscr{A}_{\mathcal{N}}$ of \mathscr{X} other than $\phi_{\mathcal{N}}$ and $\mathscr{X}_{\mathcal{N}}$. Clearly, $\phi_{\mathcal{N}} \subset \mathscr{A}_{\mathcal{N}} \subset \mathscr{X}_{\mathcal{N}}$. It is observed that the number of such $\mathscr{A}_{\mathcal{N}}$ is equal to $|\mathscr{P}_{\mathcal{N}\mathscr{C}r}(\mathscr{X})| - 2$. Since the set $\{\phi_{\mathcal{N}}, \mathscr{A}_{\mathcal{N}}, \mathscr{X}_{\mathcal{N}}\}$ form a NCrT and the total number of such NCrTs is $|\mathscr{P}_{\mathcal{N}\mathscr{C}r}(\mathscr{X})| - 2$. Now, $|\mathscr{P}_{\mathcal{N}\mathscr{C}r}(\mathscr{X})| = (3.2^n - 4) + 3! \left\{ \sum_{i=2}^n \mathscr{S}(i, 2) \binom{n}{i} + \sum_{j=3}^n \mathscr{S}(j, 3) \binom{n}{j} \right\}$. Therefore,

$$\begin{aligned} |\mathscr{P}_{\mathscr{N}\mathscr{C}r}(\mathscr{X})| - 2 &= \left[(3.2^n - 4) + 3! \left\{ \sum_{i=2}^n \mathscr{S}(i,2) \binom{n}{i} + \sum_{j=3}^n \mathscr{S}(j,3) \binom{n}{j} \right\} \right] \\ &- 2 \\ &= (3.2^n - 6) + 3! \left\{ \sum_{i=2}^n \mathscr{S}(i,2) \binom{n}{i} + \sum_{j=3}^n \mathscr{S}(j,3) \binom{n}{j} \right\} \\ &= 3(2^n - 2) + 3! \left\{ \sum_{i=2}^n \mathscr{S}(i,2) \binom{n}{i} + \sum_{j=3}^n \mathscr{S}(j,3) \binom{n}{j} \right\}. \end{aligned}$$

Hence,

$$\mathcal{T}_{\mathscr{C}r}(n,3) = |\mathscr{P}_{\mathscr{N}\mathscr{C}r}(\mathscr{X})| - 2$$

= 3(2ⁿ - 2) + 3! $\left[\sum_{i=2}^{n} \mathscr{S}(i,2)\binom{n}{i} + \sum_{j=3}^{n} \mathscr{S}(j,3)\binom{n}{j}\right]$

Example 5.2.1

Let
$$\mathscr{X} = \{u, v\}$$
, then
 $\mathscr{T}_{\mathscr{C}r}(2,3) = 3(2^2 - 2) + 3! \left\{ \sum_{i=2}^2 \mathscr{S}(i,2) \binom{2}{i} + \sum_{j=3}^2 \mathscr{S}(j,3) \binom{2}{j} \right\}.$

Clearly, $\sum_{j=3}^{2} \mathcal{S}(j,3) {\binom{2}{j}} = 0.$ So, $\mathcal{T}_{\mathscr{C}r}(2,3) = 6 + 6 \left\{ \mathcal{S}(2,2) {\binom{2}{2}} + 0 \right\} = 12.$ Consequently, $\mathcal{T}_{\mathscr{C}r}(2,3) = 12$ and these NCrTs having 3-NCrOSs are listed below

 $\{\phi_{\mathcal{N}}, \mathscr{A}_{1}, \mathscr{X}_{\mathcal{N}}\}, \{\phi_{\mathcal{N}}, \mathscr{A}_{2}, \mathscr{X}_{\mathcal{N}}\}, \{\phi_{\mathcal{N}}, \mathscr{A}_{3}, \mathscr{X}_{\mathcal{N}}\}, \{\phi_{\mathcal{N}}, \mathscr{A}_{4}, \mathscr{X}_{\mathcal{N}}\}, \{\phi_{\mathcal{N}}, \mathscr{A}_{5}, \mathscr{X}_{\mathcal{N}}\}, \{\phi_{\mathcal{N}}, \mathscr{A}_{6}, \mathscr{X}_{\mathcal{N}}\}, \{\phi_{\mathcal{N}}, \mathscr{A}_{7}, \mathscr{X}_{\mathcal{N}}\}, \{\phi_{\mathcal{N}}, \mathscr{A}_{8}, \mathscr{X}_{\mathcal{N}}\}, \{\phi_{\mathcal{N}}, \mathscr{A}_{9}, \mathscr{X}_{\mathcal{N}}\}, \{\phi_{\mathcal{N}}, \mathscr{A}_{10}, \mathscr{X}_{\mathcal{N}}\}, \{\phi_{\mathcal{N}}, \mathscr{A}_{11}, \mathscr{X}_{\mathcal{N}}\}, \{\phi_{\mathcal{N}}, \mathscr{A}_{12}, \mathscr{X}_{\mathcal{N}}\}.$

5.3 Neutrosophic Crisp Topological Spaces with 4-NCrOSs

The NCrT having 4-NCrOSs must have the form $\mathscr{T} = \{\phi_{\mathscr{N}}, \mathscr{A}, \mathscr{B}, \mathscr{X}_{\mathscr{N}}\}\)$, where $\mathscr{A} \neq \mathscr{B}$ such that $\mathscr{A} \cap \mathscr{B}, \mathscr{A} \cup \mathscr{B} \in \mathscr{T}$. To compute the number of NCrTs with exactly 4-NCrOSs, we need to compute formulae for following cases:

Case 1: $\mathscr{A} \cap \mathscr{B} = \phi_{\mathscr{N}}, \mathscr{A} \cup \mathscr{B} = \mathscr{X}_{\mathscr{N}}$ Case 2: $\mathscr{A} \cap \mathscr{B} = \phi_{\mathscr{N}}, \ \mathscr{A} \cup \mathscr{B} = \phi_{\mathscr{N}}$ Case 3: $(\mathscr{A} \cap \mathscr{B} = \mathscr{A} \text{ or } \mathscr{B}, \ \mathscr{A} \cup \mathscr{B} = \phi_{\mathscr{N}})$ or $(\mathscr{A} \cap \mathscr{B} = \phi_{\mathscr{N}}, \ \mathscr{A} \cup \mathscr{B} = \mathscr{A} \text{ or } \mathscr{B})$ Case 4: $(\mathscr{A} \cap \mathscr{B} = \mathscr{A}, \ \mathscr{A} \cup \mathscr{B} = \mathscr{A})$ or $(\mathscr{A} \cap \mathscr{B} = \mathscr{B}, \ \mathscr{A} \cup \mathscr{B} = \mathscr{B})$ Case 5: $(\mathscr{A} \cap \mathscr{B} = \mathscr{A}, \ \mathscr{A} \cup \mathscr{B} = \mathscr{B})$ or $(\mathscr{A} \cap \mathscr{B} = \mathscr{B}, \ \mathscr{A} \cup \mathscr{B} = \mathscr{A}).$

Proposition 5.3.1

For a non-empty finite set \mathscr{X} with $|\mathscr{X}| = n$, the number of NCrTs having 4-NCrOSs satisfying the condition in case 1 is obtained by the formula

$$\mathscr{S}(n,2)(2^n+1).$$

Proof:

In general, the number of partitions of a non-empty set \mathscr{X} with $|\mathscr{X}| = n$ into two blocks is given by $\mathscr{S}(n,2)$. To obtain $\mathscr{A} \cap \mathscr{B} = \phi_{\mathscr{N}}$ and $\mathscr{A} \cup \mathscr{B} = \mathscr{X}_{\mathscr{N}}$, clearly \mathscr{A} and \mathscr{B} must have the following two forms:

(i) $\mathscr{A} = \langle \mathscr{A}_1, \mathscr{A}_2, \emptyset \rangle \& \mathscr{B} = \langle \mathscr{B}_1, \mathscr{B}_2, \emptyset \rangle,$

(ii) $\mathscr{A} = \langle \mathscr{A}_1, \emptyset, \mathscr{A}_3 \rangle \& \mathscr{B} = \langle \mathscr{B}_1, \emptyset, \mathscr{B}_3 \rangle.$

Let us count the ways that they can be chosen.

- (i) We have, $\mathscr{A} \cap \mathscr{B} = \langle \mathscr{A}_1 \cap \mathscr{B}_1, \mathscr{A}_2 \cap \mathscr{B}_2, \emptyset \rangle$, and $\mathscr{A} \cup \mathscr{B} = \langle \mathscr{A}_1 \cup \mathscr{B}_1, \mathscr{A}_2 \cap \mathscr{B}_2, \emptyset \rangle$. Now, to get $\mathscr{A} \cap \mathscr{B} = \phi_{\mathscr{N}}$ and $\mathscr{A} \cup \mathscr{B} = \mathscr{X}_{\mathscr{N}}$, we must have, $\mathscr{A}_1 \cap \mathscr{B}_1 = \emptyset, \mathscr{A}_1 \cup \mathscr{B}_1 = \mathscr{X}$ and $\mathscr{A}_2 \cap \mathscr{B}_2 = \emptyset$. This implies that $\mathscr{A}_1, \mathscr{B}_1$ is a partition of \mathscr{X} and so, $\mathscr{B}_1 = \mathscr{X} \mathscr{A}_1$. Therefore, $\mathscr{A}_1, \mathscr{B}_1$ can be chosen in $\mathscr{S}(n, 2)$ ways. Now, if $|\mathscr{A}_1| = i$ then $|\mathscr{B}_1| = n i$. Since $\mathscr{A}_2 \cap \mathscr{B}_2 = \emptyset$, then the neutrosophic crisp subset \mathscr{A}_2 can be chosen out of n i elements in $\binom{n-i}{k}, k = 0, 1, 2, \ldots, n i$ ways with k = 0 representing the empty set. Therefore, \mathscr{A}_2 can be chosen out of n i elements in $\sum_{k=0}^{i} \binom{i}{k} = 2^i$ ways. Hence, the total number of ways is $\mathscr{S}(n, 2) \cdot 2^{n-i} \cdot 2^i = \mathscr{S}(n, 2) \cdot 2^n$.
- (ii) We have, A ∩ B = ⟨A₁ ∩ B₁, ∅, A₃ ∪ B₃⟩, and A ∪ B = ⟨A₁ ∪ B₁, ∅, A₃ ∩ B₃⟩. Now, to get A ∩ B = φ_N and A ∪ B = X_N, we must have, A₁ ∩ B₁ = ∅, A₃ ∪ B₃ = X and A₁ ∪ B₁ = X, A₃ ∩ B₃ = ∅ simultaneously. This shows that A₁ and B₁ is a partition of X and A₃ = A₁^C = B₁, B₃ = B₁^C = A₁. Therefore, we can take A₁ and B₁ or A₃ and B₃ in S(n, 2) ways.

From (i) and (ii), the total number of ways is $S(n, 2)(2^n + 1)$.

Hence, the number of NCrTs having 4-NCrOSs satisfying the condition in case 1 is obtained by the formula

$$\mathcal{S}(n,2)(2^n+1).$$

Proposition 5.3.2

The number of NCrTs having 4-NCrOSs on a non-empty set \mathscr{X} satisfying the condition in case 2 is obtained by the formula

$$\frac{n(n-1)}{2} + \left\{ \mathcal{S}(n,2) \times 2^n \right\} + \sum_{i=3}^n \left\{ \binom{n}{i} \mathcal{S}(i,2) \right\}$$

where $|\mathscr{X}| = n$.

Proof:

To obtain $\mathscr{A} \cap \mathscr{B} = \phi_{\mathscr{N}}$ and $\mathscr{A} \cup \mathscr{B} = \phi_{\mathscr{N}}$, clearly, \mathscr{A} and \mathscr{B} must have the following two forms

(i) $\mathscr{A} = \langle \emptyset, \mathscr{A}_2, \mathscr{A}_3 \rangle \& \mathscr{B} = \langle \emptyset, \mathscr{B}_2, \mathscr{B}_3 \rangle$ such that $\mathscr{A}_3 \cup \mathscr{B}_3 = \mathscr{X}$ and $\mathscr{A}_3 \cap \mathscr{B}_3 = \emptyset$ and $\mathscr{A}_2 \cap \mathscr{B}_2 = \emptyset$.

(ii)
$$\mathscr{A} = \langle \emptyset, \mathscr{A}_2, \emptyset \rangle \& \mathscr{B} = \langle \emptyset, \mathscr{B}_2, \emptyset \rangle$$
 such that $\mathscr{A}_2 \cap \mathscr{B}_2 = \emptyset$.

From (i), $\mathscr{A} \cap \mathscr{B} = \langle \emptyset, \mathscr{A}_2 \cap \mathscr{B}_2, \mathscr{A}_3 \cup \mathscr{B}_3 \rangle$, and $\mathscr{A} \cup \mathscr{B} = \langle \emptyset, \mathscr{A}_2 \cap \mathscr{B}_2, \mathscr{A}_3 \cap \mathscr{B}_3 \rangle$. Since, $\mathscr{A}_3 \cup \mathscr{B}_3 = \mathscr{X}$ and $\mathscr{A}_3 \cap \mathscr{B}_3 = \emptyset$, which implies that \mathscr{A}_3 and \mathscr{B}_3 is a partition of \mathscr{X} and say $\mathscr{B}_3 = \mathscr{X} - \mathscr{A}_3$. Therefore, \mathscr{A}_3 and \mathscr{B}_3 can be chosen in $\mathscr{S}(n, 2)$ ways. Now, if $|\mathscr{A}_3| = i$, $|\mathscr{B}_3| = n - i$, $1 \leq i \leq n-1$, and $\mathscr{A}_2 \cap \mathscr{B}_2 = \emptyset$, then \mathscr{A}_2 can be chosen in $\sum_{k=0}^{n-i} \binom{n-i}{k} = 2^{n-i}$ ways, and similarly, \mathscr{B}_2 can be chosen out of n - (n - i) = i elements in $\sum_{k=0}^{i} \binom{i}{k} = 2^i$ ways.

Therefore, the total number of ways is $\mathscr{S}(n,2) \times 2^{n-i} \times 2^i$ i.e., $\mathscr{S}(n,2) \times 2^n$.

From (ii), $\mathscr{A} \cap \mathscr{B} = \langle \emptyset, \mathscr{A}_2 \cap \mathscr{B}_2, \emptyset \rangle$, $\mathscr{A} \cup \mathscr{B} = \langle \emptyset, \mathscr{A}_2 \cap \mathscr{B}_2, \emptyset \rangle$, and $\mathscr{A}_2 \cap \mathscr{B}_2 = \emptyset$. If $|\mathscr{A}_2 \cup \mathscr{B}_2| = i$, $2 \le i \le n$, then $\mathscr{A}_2 \cup \mathscr{B}_2$ is chosen in $\binom{n}{i}$ different ways and then it is partitioned into two disjoint blocks: this is done in $\mathscr{S}(i, 2)$ different ways. Therefore, the number of ways for form (ii) is $\sum_{i=2}^n \binom{n}{i} \mathscr{S}(i, 2)$.

Hence, the number of NCrTs having 4-NCrOSs satisfying condition in case 2 is obtained by the formula

$$\{\mathscr{S}(n,2)\times 2^n\} + \sum_{i=2}^n \left\{ \binom{n}{i} \mathscr{S}(i,2) \right\}$$

i.e.,

$$\frac{n(n-1)}{2} + \left\{ \mathscr{S}(n,2) \times 2^n \right\} + \sum_{i=3}^n \left\{ \binom{n}{i} \mathscr{S}(i,2) \right\}.$$

Proposition 5.3.3

For a non-empty finite set \mathscr{X} with $|\mathscr{X}| = n$, the number of NCrTs having 4-NCrOSs satsifying conditions in case 3 is obtained by the formula $2(2^n - 2)^2$.

Proof:

There are two forms

(i) $\mathscr{A} = \langle \emptyset, \emptyset, \mathscr{A}_3 \rangle \& \mathscr{B} = \langle \emptyset, \mathscr{B}_2, \emptyset \rangle,$

(ii)
$$\mathscr{A} = \langle \mathscr{A}_1, \emptyset, \emptyset \rangle \& \mathscr{B} = \langle \emptyset, \mathscr{B}_2, \emptyset \rangle.$$

Let us count the ways that they can be chosen.

Clearly, these two forms agree with the conditions in case 3, i.e., for the first kind, we have, $\mathscr{A} \cap \mathscr{B} = \langle \emptyset, \emptyset, \mathscr{A}_3 \rangle = \mathscr{A}$ and $\mathscr{A} \cup \mathscr{B} = \langle \emptyset, \emptyset, \emptyset \rangle = \phi_{\mathscr{N}}$, and for the second kind $\mathscr{A} \cap \mathscr{B} = \langle \emptyset, \emptyset, \emptyset \rangle = \phi_{\mathscr{N}}$ and $\mathscr{A} \cup \mathscr{B} = \langle \mathscr{A}_1, \emptyset, \emptyset \rangle = \mathscr{A}$. Now, since $\emptyset \subset \mathscr{A}_3 \subset \mathscr{X}, \emptyset \subset \mathscr{B}_2 \subset \mathscr{X}$ such that $|\mathscr{A}_3| = |\mathscr{B}_2| = i, 1 \leq i \leq n-1$ so, \mathscr{A}_3 and \mathscr{B}_2 are chosen in $\binom{n}{i}$ different ways. This implies that \mathscr{A} and \mathscr{B} are chosen in $\binom{n}{i}$ different ways. Therefore, the number of ways in this kind is $\left\{\sum_{i=1}^{n-1} \binom{n}{i}\right\} \times \left\{\sum_{i=1}^{n-1} \binom{n}{i}\right\} = \left(\sum_{i=1}^{n-1} \binom{n}{i}\right)^2 = (2^n - 2)^2$.

Similarly, the second kind is computed and is equal to $(2^n - 2)^2$. Finally, the desired number of ways is $2(2^n - 2)^2$.

Proposition 5.3.4

For a non-empty set \mathscr{X} with $|\mathscr{X}| = n$, the number of NCrTs having 4-NCrOSs satisfying condition in case 4 is obtained by the formula

$$\sum_{i=1}^{n-2} \left\{ \binom{n}{i} \left(2^{n-i} - 2 \right) \right\} + 2\mathcal{T}_1 + 6 \left(\mathcal{T}_2 + \mathcal{T}_3 \right),$$

where $\mathcal{T}_{k} = \sum_{i=k}^{n-1} \left\{ \binom{n}{i} \mathcal{S}(i,k) \left(2^{n-i} - 1 \right) \right\}, \ k = 1, 2, 3.$

Proof:

Let $\mathscr{A} = \langle \mathscr{A}_1, \mathscr{A}_2, \mathscr{A}_3 \rangle$ and $\mathscr{B} = \langle \mathscr{B}_1, \mathscr{B}_2, \mathscr{B}_3 \rangle$. Then to satisfy the condition $(\mathscr{A} \cap \mathscr{B} = \mathscr{A}, \mathscr{A} \cup \mathscr{B} = \mathscr{A})$ or $(\mathscr{A} \cap \mathscr{B} = \mathscr{B}, \mathscr{A} \cup \mathscr{B} = \mathscr{B})$, we must have, $\mathscr{A}_1 = \mathscr{B}_1, \mathscr{A}_2 \subset \mathscr{B}_2, \mathscr{A}_3 = \mathscr{B}_3$ or $\mathscr{A}_1 = \mathscr{B}_1, \mathscr{B}_2 \subset \mathscr{A}_2, \mathscr{A}_3 = \mathscr{B}_3$ respectively. Then, we obtain four forms

- (i) $\mathscr{A} = \langle \emptyset, \mathscr{A}_2, \emptyset \rangle \& \mathscr{B} = \langle \emptyset, \mathscr{B}_2, \emptyset, \rangle$ such that $\mathscr{A}_2 \subset \mathscr{B}_2$ or $\mathscr{B}_2 \subset \mathscr{A}_2$,
- (ii) $\mathscr{A} = \langle \emptyset, \emptyset, \mathscr{A}_3 \rangle \& \mathscr{B} = \langle \emptyset, \mathscr{B}_2, \mathscr{A}_3 \rangle \text{ and } \mathscr{A} = \langle \mathscr{A}_1, \emptyset, \emptyset \rangle \& \mathscr{B} = \langle \mathscr{A}_1, \mathscr{B}_2, \emptyset \rangle,$
- (iii) $\mathscr{A} = \langle \mathscr{A}_1, \mathscr{A}_2, \mathscr{A}_3 \rangle$ & $\mathscr{B} = \langle \mathscr{A}_1, \mathscr{B}_2, \mathscr{A}_3 \rangle$; exactly one of $\mathscr{A}_i, i = 1, 2, 3$ is \emptyset and $\mathscr{A}_2 \subset \mathscr{B}_2$.
- (iv) $\mathscr{A} = \langle \mathscr{A}_1, \mathscr{A}_2, \mathscr{A}_3 \rangle \& \mathscr{B} = \langle \mathscr{A}_1, \mathscr{B}_2, \mathscr{A}_3 \rangle$ such that all $\mathscr{A}_i, i = 1, 2, 3$ are non-empty and $\mathscr{A}_2 \subset \mathscr{B}_2$.

Let us count the ways that they can be chosen.

- (i) Let A₂ ⊂ B₂ and if |A₂| = i, 1 ≤ i ≤ n − 2 then i < |B₂| = k ≤ n − 1. Therefore, A₂ is chosen in ⁿ_i ways and B₂ is chosen in ∑^{(n-i)−1}_{j=1} (ⁿ⁻ⁱ_j) = 2ⁿ⁻ⁱ − 2 different ways. Since, i varies from 1 to n − 2, A₂ and B₂ are chosen in ∑ⁿ⁻²_{i=1} { (ⁿ_i) (2ⁿ⁻ⁱ − 2) } different ways. Hence, the neutrosophic crisp subsets A and B are chosen in ∑ⁿ⁻²_{i=1} { (ⁿ_i) (2ⁿ⁻ⁱ − 2) } different ways.
- (ii) Let $|\mathscr{A}_3| = i, 1 \leq i \leq n-1$ then \mathscr{A}_3 is chosen in $\binom{n}{i}$ different ways then it is partitioned into one block: this is done in $\mathscr{S}(i, 1)$ different ways and hence \mathscr{A} . Next, in $\mathscr{B}, \mathscr{A}_3 \cap \mathscr{B}_2 = \emptyset$ and so, \mathscr{B}_2 is chosen from n-i elements in $\sum_{j=1}^{n-i} \binom{n-i}{j} = 2^{n-i} - 1$ different ways and hence \mathscr{B} . Since *i* varies from 1 to n-1, we obtain $\sum_{i=1}^{n-1} \binom{n}{i} \mathscr{S}(i, 1)(2^{n-i} - 1)$ different ways for \mathscr{A} and \mathscr{B} .

Similarly, for $\mathscr{A} = \langle \mathscr{A}_1, \emptyset, \emptyset \rangle$ & $\mathscr{B} = \langle \mathscr{A}_1, \mathscr{B}_2, \emptyset \rangle$, we have $\sum_{i=1}^{n-1} {n \choose i} \mathscr{S}(i, 1)(2^{n-i} - 1)$ different ways.

(iii) We have, $\mathscr{A}_1 \cap \mathscr{A}_3 = \emptyset$. If $|\mathscr{A}_1 \cup \mathscr{A}_3| = i, 2 \le i \le n-1$ then $\mathscr{A}_1, \mathscr{A}_3$ is chosen in $\binom{n}{i}\mathscr{S}(i, 2)$ different ways. Since $\mathscr{A}_1 \cap \mathscr{B}_2 = \mathscr{A}_3 \cap \mathscr{B}_2 = \emptyset$, so, \mathscr{B}_2 is chosen in $\binom{n-i}{j}, 1 \le j \le n-i$ different ways. Therefore, \mathscr{B}_2 is chosen in $\sum_{j=1}^{n-i} \binom{n-i}{j} = 2^{n-i} - 1$ different ways. Together \mathscr{A} and \mathscr{B} is chosen in $\sum_{i=2}^{n-1} \binom{n}{i} \mathscr{S}(i, 2)(2^{n-i} - 1)$ different ways. It is known that we can arrange three element into three places in six different ways, so, \mathscr{A} has six forms, as three components of \mathscr{A} are the neutrosophic crisp subsets $\mathscr{A}_1, \mathscr{A}_3$ and \emptyset .

Hence, the total number of ways to choose \mathscr{A} and \mathscr{B} is

$$6\sum_{i=2}^{n-1} \binom{n}{i} \mathcal{S}(i,2)(2^{n-i}-1).$$

(iv) We have, $\mathscr{A}_1 \cap \mathscr{A}_2 = \mathscr{A}_1 \cap \mathscr{A}_3 = \mathscr{A}_2 \cap \mathscr{A}_3 = \emptyset$. If $|\mathscr{A}_1 \cup \mathscr{A}_2 \cup \mathscr{A}_3| = i, 3 \leq i \leq n-1$ then $\mathscr{A}_1, \mathscr{A}_2, \mathscr{A}_3$ are chosen in $\binom{n}{i}\mathscr{S}(i, 3)$ different ways. Since $\mathscr{A}_1 \cap \mathscr{B}_2 = \mathscr{A}_3 \cap \mathscr{B}_2 = \emptyset$, so, \mathscr{B}_2 is chosen in $\binom{n-i}{j}, 1 \leq j \leq n-i$ different ways. Therefore, \mathscr{B}_2 is chosen in $\sum_{j=1}^{n-i} \binom{n-i}{j} = 2^{n-i} - 1$ different ways. Together \mathscr{A} and \mathscr{B} are chosen in $\sum_{i=3}^{n-i} \binom{n}{i} \mathscr{S}(i, 3) 2^{n-i} - 1$ different ways. It is known that we can arrange three elements into the three places in six different ways, so, \mathscr{A} has 6 forms, as three components of \mathscr{A} are different neutrosophic crisp subsets $\mathscr{A}_1, \mathscr{A}_2$ and \mathscr{A}_3 .

Hence, the total number of ways to choose \mathscr{A} and \mathscr{B} is

$$6\sum_{i=3}^{n-1} \binom{n}{i} \mathcal{S}(i,3)(2^{n-i}-1).$$

Hence, we have the total

$$\sum_{i=1}^{n-2} \left\{ \binom{n}{i} \left(2^{n-i} - 2 \right) \right\} + \sum_{i=1}^{n-1} \binom{n}{i} \mathscr{S}(i,1) (2^{n-i} - 1) +$$

$$6\sum_{i=2}^{n-1} \binom{n}{i} \mathcal{S}(i,2)(2^{n-i}-1) + 6\sum_{i=3}^{n-1} \binom{n}{i} \mathcal{S}(i,3)(2^{n-i}-1)$$

i.e.,

$$\sum_{i=1}^{n-2} \left\{ \binom{n}{i} \left(2^{n-i} - 2 \right) \right\} + 2\mathcal{F}_1 + 6 \left(\mathcal{F}_2 + \mathcal{F}_3 \right),$$

where $\mathscr{T}_k = \sum_{i=k}^{n-1} \{ \binom{n}{i} \mathscr{S}(i,k) (2^{n-i}-1) \}, k = 1, 2, 3$. This formula gives the number of NCrTs having 4-NCrOSs satisfying condition in case 4.

Proposition 5.3.5

For a non-empty set \mathscr{X} with $|\mathscr{X}| = n$, the number of NCrTs having 4-NCrOSs satisfying condition in case 5 is obtained by the formula

$$\begin{split} \sum_{i=1}^{n-1} \binom{n}{i} \left[(2^n - 2) + 2 \left\{ \left(\sum_{j=1}^{i-1} \binom{i}{j} 2^{n-j} \right) + (2^{n-i} - 1) \right\} \right] + \\ 2 \sum_{i=1}^{n-1} \binom{n}{i} (2^{n-i} - 1) + \sum_{i=1}^{n-1} \binom{n}{i} (2^{n-i} - 1)^2 + 2\mathcal{T}_n + \sum_{i=0}^{n-2} \binom{n}{i} \mathcal{T}_{n-i}, \\ \text{where } \mathcal{T}_n = \sum_{i=1}^{n-2} \binom{n}{i} \left\{ \sum_{k=1}^{n-(i+1)} \binom{n-i}{k} (2^{n-(i+k)} - 1) \right\} + \\ \sum_{i=1}^{n-2} \binom{n}{i} \left[\sum_{j=1}^{n-i} \binom{n-i}{j} \left\{ \sum_{k=1}^{j} \binom{j}{k} (2^{n-(i+j)} - 1) \right\} \right] \\ \text{or} \\ \mathcal{T}_n = \sum_{i=1}^{n-2} \binom{n}{i} \left\{ \sum_{k=1}^{n-(i+1)} \binom{n-i}{k} (2^{n-(i+k)} - 1) \right\} + \\ \sum_{i=1}^{n-2} \binom{n}{i} \left[\sum_{j=1}^{n-i} \binom{n-i}{j} \binom{j}{k} \right\} (2^{n-(i+j)} - 1) \right]. \end{split}$$

Proof:

Here, the second component must always match to satisfy the conditions in case 5.

For $\mathscr{A} = \langle \emptyset, \emptyset, \mathscr{A}_3 \rangle$ we can choose \mathscr{B} in two forms which are $\mathscr{B} = \langle \mathscr{B}_1, \emptyset, \emptyset \rangle$ and $\mathscr{B} = \langle \mathscr{B}_1, \emptyset, \mathscr{B}_3 \rangle$ such that $\mathscr{B}_3 \subseteq \mathscr{A}_3$. For this kind of \mathscr{A} we have $\binom{n}{i}$ different ways. For each \mathscr{A} , we can choose $\mathscr{B} = \langle \mathscr{B}_1, \emptyset, \emptyset \rangle$ in $2^n - 2$ different ways. Next if $\mathscr{B}_3 \subset \mathscr{A}_3$, say $|\mathscr{B}_3| = j < i = |\mathscr{A}_3|$,

we can choose \mathscr{B} in $\sum_{j=1}^{i-1} {i \choose j} 2^{n-j}$ different ways and if $\mathscr{B}_3 = \mathscr{A}_3$, say $|\mathscr{B}_3| = |\mathscr{A}_3| = i$, then \mathscr{B} can be chosen in $2^{n-i} - 1$ different ways. Similarly, for $\mathscr{A} = \langle \mathscr{A}_1, \emptyset, \emptyset \rangle$, we have same number of choices for \mathscr{B} satisfying conditions in case 5.

Therefore, in this part we have

$$\sum_{i=1}^{n-1} \binom{n}{i} \left[(2^n - 2) + 2 \left\{ \left(\sum_{j=1}^{i-1} \binom{i}{j} 2^{n-j} \right) + (2^{n-i} - 1) \right\} \right]$$

different ways.

For $\mathscr{A} = \langle \emptyset, \mathscr{A}_2, \emptyset \rangle$, we can choose $\mathscr{B} = \langle \emptyset, \mathscr{A}_2, \mathscr{B}_3 \rangle$ and $\mathscr{B} = \langle \mathscr{B}_1, \mathscr{A}_2, \emptyset \rangle$. Since \mathscr{A}_2 can be chosen in $\binom{n}{i}, i = 1, 2, ..., n - 1$ different ways then \mathscr{B}_3 can be chosen in $2^{n-i} - 1$ different ways for each *i* and therefore, \mathscr{B} . As we have two forms of \mathscr{B} and are symmetric, and *i* varies from 1 to n - 1, we have the total $2 \sum_{i=1}^{n-1} \binom{n}{i} (2^{n-i} - 1)$.

For $\mathscr{A} = \langle \emptyset, \mathscr{A}_2, \mathscr{A}_3 \rangle$, we can choose $\mathscr{B} = \langle \mathscr{B}_1, \mathscr{A}_2, \mathscr{B}_3 \rangle, \mathscr{A}_3 \subseteq \mathscr{B}_3$ and \mathscr{B}_1 is any subset of \mathscr{X} different from \mathscr{A}_2 and \mathscr{B}_3 . Then \mathscr{A} and \mathscr{B} can be chosen in $\sum_{i=1}^{n-2} \binom{n}{i} \left\{ \sum_{k=1}^{n-(i+1)} \binom{n-i}{k} (2^{n-(i+k)} - 1) \right\} +$

 $\sum_{i=1}^{n-2} \binom{n}{i} \left[\sum_{j=1}^{n-i} \binom{n-i}{j} \left\{ \sum_{k=1}^{j} \binom{j}{k} (2^{n-(i+j)} - 1) \right\} \right] \text{ different ways. Let}$ us take $\sum_{i=1}^{n-2} \binom{n}{i} \left\{ \sum_{k=1}^{n-(i+1)} \binom{n-i}{k} (2^{n-(i+k)} - 1) \right\} +$

 $\sum_{i=1}^{n-2} \binom{n}{i} \left[\sum_{j=1}^{n-i} \binom{n-i}{j} \left\{ \sum_{k=1}^{j} \binom{j}{k} (2^{n-(i+j)} - 1) \right\} \right] = \mathcal{T}_n \text{ for further use.}$ Also, for $\mathscr{A} = \langle \mathscr{A}_1, \mathscr{A}_2, \emptyset \rangle$, we have equal number of choices as it is symmetric to $\mathscr{A} = \langle \emptyset, \mathscr{A}_2, \mathscr{A}_3 \rangle$. Hence, a total of $2\mathcal{T}_n$ different ways.

For $\mathscr{A} = \langle \emptyset, \mathscr{A}_2, \mathscr{A}_3 \rangle$, we can also choose $\mathscr{B} = \langle \mathscr{B}_1, \mathscr{A}_2, \emptyset \rangle$ which can be done in $\sum_{i=1}^{n-1} {n \choose i} (2^{n-i} - 1)^2$ different ways.

For $\mathscr{A} = \langle \mathscr{A}_1, \mathscr{A}_2, \mathscr{A}_3 \rangle$, we can choose $\mathscr{B} = \langle \mathscr{B}_1, \mathscr{A}_2, \mathscr{B}_3 \rangle$ such that $\mathscr{A}_1 \subseteq \mathscr{B}_1, \mathscr{B}_3 \subseteq \mathscr{A}_3$ and $|\mathscr{A}_2| = i, 0 \leq i \leq n-2$. If $|\mathscr{A}_2| = 0$ i.e., $\mathscr{A}_2 = \emptyset$ then \mathscr{B} can be chosen in $\binom{n}{0}\mathscr{T}_n$ different ways. Further, if $|\mathscr{A}_2| = 1$ then \mathscr{B} can be chosen in $\binom{n}{1}\mathscr{T}_{n-1}$ different ways. Continuing in the similar way for $|\mathscr{A}_2| = n-2$, we have $\binom{n}{n-2}\mathscr{T}_{n-(n-2)}$ i.e., $\binom{n}{n-2}\mathscr{T}_2$ different

ways. Thus, for $\mathscr{A} = \langle \mathscr{A}_1, \mathscr{A}_2, \mathscr{A}_3 \rangle$, we can choose \mathscr{B} in $\sum_{i=0}^{n-2} {n \choose i} \mathscr{T}_{n-i}$ different ways.

Hence, the number of NCrTs having 4-NCrOSs satisfying conditions in case 5 is obtained by the formula

$$\sum_{i=1}^{n-1} \binom{n}{i} \left[(2^n - 2) + 2 \left\{ \left(\sum_{j=1}^{i-1} \binom{i}{j} 2^{n-j} \right) + (2^{n-i} - 1) \right\} \right] + 2 \sum_{i=1}^{n-1} \binom{n}{i} (2^{n-i} - 1) + \sum_{i=1}^{n-1} \binom{n}{i} (2^{n-i} - 1)^2 + 2\mathcal{T}_n + \sum_{i=0}^{n-2} \binom{n}{i} \mathcal{T}_{n-i}.$$

Example 5.3.1

The following table gives the number of NCrTs having 4-NCrOSs for $\mathscr{X} \leq 5$.

$\mathscr{A}\cap\mathscr{B},\mathscr{A}\cup\mathscr{B}$	Number of NCrTSs having 4-NCrOSs on \mathscr{X}				
	$ \mathscr{X} = 1$	$ \mathscr{X} = 2$	$ \mathscr{X} = 3$	$ \mathscr{X} = 4$	$ \mathscr{X} = 5$
Case 1: $\mathscr{A} \cap \mathscr{B} = \phi_{\mathscr{N}},$	0	5	27	119	495
$\mathscr{A}\cup\mathscr{B}=\mathscr{X}_{\mathscr{N}}$					
Case 2: $\mathscr{A} \cap \mathscr{B} = \phi_{\mathscr{N}}$,	0	5	30	137	570
$\mathscr{A}\cup\mathscr{B}=\phi_{\mathscr{N}}$					
Case 3: $\mathscr{A} \cap \mathscr{B} = \mathscr{A}$,	0	8	72	392	1800
$\mathscr{A}\cup\mathscr{B}=\phi_N$					
Case 4: $\mathscr{A} \cap \mathscr{B} = \mathscr{A}$,	0	4	48	340	2040
$\mathscr{A}\cup\mathscr{B}=\mathscr{A}$					
Case 5: $\mathscr{A} \cap \mathscr{B} = \mathscr{A}$,	0	14	216	1958	15240
$\mathscr{A}\cup\mathscr{B}=\mathscr{B}$					
The total number of	0	36	393	2946	20145
NCrTSs having 4-					
NCrOSs on $\mathscr X$					

Table 5.1: Number of NCrTSs having 4-NCrOSs on \mathscr{X}

Suppose, $\mathscr{X} = \{a, b\}$ i.e., $|\mathscr{X}| = 2$, then from Table 5.1, we have, $\mathscr{T}_{\mathscr{C}r}(2,4) = 36$. These are

For Case 1:

$$\begin{split} \{\phi_{\mathcal{N}}, \mathscr{X}_{\mathcal{N}}, A_3 &= \langle \{a\}, \emptyset, \emptyset \rangle, A_6 = \langle \{b\}, \emptyset, \emptyset \}, \\ \{\phi_{\mathcal{N}}, \mathscr{X}_{\mathcal{N}}, A_3 &= \langle \{a\}, \emptyset, \emptyset, A_{12} = \langle \{b\}, \{a\}, \emptyset \rangle \}, \\ \{\phi_{\mathcal{N}}, \mathscr{X}_{\mathcal{N}}, A_6 &= \langle \{b\}, \emptyset, \emptyset \rangle, A_9 = \langle \{a\}, \{b\}, \emptyset \rangle \}, \end{split}$$

$$\{\phi_{\mathcal{N}}, \mathscr{X}_{\mathcal{N}}, A_8 = \langle \{a\}, \emptyset, \{b\} \rangle, A_{11} = \langle \{b\}, \emptyset, \{a\} \rangle\}, \\ \{\phi_{\mathcal{N}}, \mathscr{X}_{\mathcal{N}}, A_9 = \langle \{a\}, \{b\}, \emptyset \rangle, A_{12} = \langle \{b\}, \{a\}, \emptyset \rangle\}.$$

For Case 2:

$$\begin{split} \{\phi_{\mathcal{N}}, \mathscr{X}_{\mathcal{N}}, A_2 &= \langle \emptyset, \{a\}, \emptyset \rangle, A_5 = \langle \emptyset, \{b\}, \emptyset \rangle \}, \\ \{\phi_{\mathcal{N}}, \mathscr{X}_{\mathcal{N}}, A_1 &= \langle \emptyset, \emptyset, \{a\} \rangle, A_4 = \langle \emptyset, \emptyset, \{b\} \rangle \}, \\ \{\phi_{\mathcal{N}}, \mathscr{X}_{\mathcal{N}}, A_1 &= \langle \emptyset, \emptyset, \{a\} \rangle, A_7 = \langle \emptyset, \{a\}, \{b\} \rangle \}, \\ \{\phi_{\mathcal{N}}, \mathscr{X}_{\mathcal{N}}, A_4 &= \langle \emptyset, \emptyset, \{b\} \rangle, A_{10} = \langle \emptyset, \{b\}, \{a\} \rangle \}, \\ \{\phi_{\mathcal{N}}, \mathscr{X}_{\mathcal{N}}, A_7 &= \langle \emptyset, \{a\}, \{b\} \rangle, A_{10} = \langle \emptyset, \{b\}, \{a\} \rangle \}. \end{split}$$

For Case 3:

$$\begin{split} \{\phi_{\mathcal{N}}, \mathscr{X}_{\mathcal{N}}, A_1 &= \langle \emptyset, \emptyset, \{a\} \rangle, A_2 &= \langle \emptyset, \{a\}, \emptyset \rangle \}, \\ \{\phi_{\mathcal{N}}, \mathscr{X}_{\mathcal{N}}, A_1 &= \langle \emptyset, \emptyset, \{a\} \rangle, A_5 &= \langle \emptyset, \{b\}, \emptyset \rangle \}, \\ \{\phi_{\mathcal{N}}, \mathscr{X}_{\mathcal{N}}, A_4 &= \langle \emptyset, \emptyset, \{b\} \rangle, A_2 &= \langle \emptyset, \{a\}, \emptyset \rangle \}, \\ \{\phi_{\mathcal{N}}, \mathscr{X}_{\mathcal{N}}, A_4 &= \langle \emptyset, \emptyset, \{b\} \rangle, A_5 &= \langle \emptyset, \{b\}, \emptyset \rangle \}, \\ \{\phi_{\mathcal{N}}, \mathscr{X}_{\mathcal{N}}, A_3 &= \langle \{a\}, \emptyset, \emptyset \rangle, A_2 &= \langle \emptyset, \{a\}, \emptyset \rangle \}, \\ \{\phi_{\mathcal{N}}, \mathscr{X}_{\mathcal{N}}, A_3 &= \langle \{a\}, \emptyset, \emptyset \rangle, A_5 &= \langle \emptyset, \{b\}, \emptyset \rangle \}, \\ \{\phi_{\mathcal{N}}, \mathscr{X}_{\mathcal{N}}, A_6 &= \langle \{b\}, \emptyset, \emptyset \rangle, A_5 &= \langle \emptyset, \{b\}, \emptyset \rangle \}, \\ \{\phi_{\mathcal{N}}, \mathscr{X}_{\mathcal{N}}, A_6 &= \langle \{b\}, \emptyset, \emptyset \rangle, A_5 &= \langle \emptyset, \{b\}, \emptyset \rangle \}. \end{split}$$

For Case 4:

$$\{\phi_{\mathcal{N}}, \mathscr{X}_{\mathcal{N}}, A_{1} = \langle \emptyset, \emptyset, \{a\} \rangle, A_{10} = \langle \emptyset, \{b\}, \{a\} \rangle\}, \\ \{\phi_{\mathcal{N}}, \mathscr{X}_{\mathcal{N}}, A_{3} = \langle \{a\}, \emptyset, \emptyset \rangle, A_{9} = \langle \{a\}, \{b\}, \emptyset \rangle\}, \\ \{\phi_{\mathcal{N}}, \mathscr{X}_{\mathcal{N}}, A_{4} = \langle \emptyset, \emptyset, \{b\} \rangle, A_{7} = \langle \emptyset, \{a\}, \{b\} \rangle\}, \\ \{\phi_{\mathcal{N}}, \mathscr{X}_{\mathcal{N}}, A_{6} = \langle \{b\}, \emptyset, \emptyset \rangle, A_{12} = \langle \{b\}, \{a\}, \emptyset \rangle\}.$$

For Case 5:

$$\begin{split} \{\phi_{\mathcal{N}}, \mathscr{X}_{\mathcal{N}}, A_1 &= \langle \emptyset, \emptyset, \{a\} \rangle, A_3 = \langle \{a\}, \emptyset, \emptyset \rangle \}, \\ \{\phi_{\mathcal{N}}, \mathscr{X}_{\mathcal{N}}, A_1 &= \langle \emptyset, \emptyset, \{a\} \rangle, A_6 = \langle \{b\}, \emptyset, \emptyset \rangle \}, \\ \{\phi_{\mathcal{N}}, \mathscr{X}_{\mathcal{N}}, A_4 &= \langle \emptyset, \emptyset, \{b\} \rangle, A_3 = \{a\}, \emptyset, \emptyset \rangle \}, \\ \{\phi_{\mathcal{N}}, \mathscr{X}_{\mathcal{N}}, A_4 &= \langle \emptyset, \emptyset, \{b\} \rangle, A_6 = \langle \{b\}, \emptyset, \emptyset \rangle \}, \\ \{\phi_{\mathcal{N}}, \mathscr{X}_{\mathcal{N}}, A_7 &= \langle \emptyset, \{a\}, \{b\} \rangle, A_2 = \langle \emptyset, \{a\}, \emptyset \rangle \}, \\ \{\phi_{\mathcal{N}}, \mathscr{X}_{\mathcal{N}}, A_7 &= \langle \emptyset, \{a\}, \{b\} \rangle, A_{12} = \langle \{b\}, \{a\}, \emptyset \rangle \}, \\ \{\phi_{\mathcal{N}}, \mathscr{X}_{\mathcal{N}}, A_{12} &= \langle \{b\}, \{a\}, \emptyset \rangle, A_2 = \langle \emptyset, \{a\}, \emptyset \rangle \}, \end{split}$$

$$\{\phi_{\mathcal{N}}, \mathscr{X}_{\mathcal{N}}, A_{9} = \langle \{a\}, \{b\}, \emptyset \rangle, A_{5} = \langle \emptyset, \{b\}, \emptyset \rangle \}, \\ \{\phi_{\mathcal{N}}, \mathscr{X}_{\mathcal{N}}, A_{9} = \langle \{a\}, \{b\}, \emptyset \rangle, A_{10} = \langle \emptyset, \{b\}, \{a\} \rangle \}, \\ \{\phi_{\mathcal{N}}, \mathscr{X}_{\mathcal{N}}, A_{10} = \langle \emptyset, \{b\}, \{a\} \rangle, A_{5} = \langle \emptyset, \{b\}, \emptyset \rangle \}, \\ \{\phi_{\mathcal{N}}, \mathscr{X}_{\mathcal{N}}, A_{8} = \langle \{a\}, \emptyset, \{b\} \rangle, A_{3} = \langle \{a\}, \emptyset, \emptyset \rangle \}, \\ \{\phi_{\mathcal{N}}, \mathscr{X}_{\mathcal{N}}, A_{8} = \langle \{a\}, \emptyset, \{b\} \rangle, A_{4} = \langle \emptyset, \emptyset, \{b\} \rangle \}, \\ \{\phi_{\mathcal{N}}, \mathscr{X}_{\mathcal{N}}, A_{11} = \langle \{b\}, \emptyset, \{a\} \rangle, A_{1} = \langle \emptyset, \emptyset, \{a\} \rangle \}, \\ \{\phi_{\mathcal{N}}, \mathscr{X}_{\mathcal{N}}, A_{11} = \langle \{b\}, \emptyset, \{a\} \rangle, A_{6} = \langle \{b\}, \emptyset, \emptyset \rangle \}.$$

As a result, we have the total $\mathcal{T}_{\mathscr{C}r}(2,4) = 36$.