CHAPTER 5

Number of Neutrosophic Crisp Topological Spaces

on a Finite Set

In Chapter 2, the formula to find the number of neutrosophic crisp subsets
in a nonempty finite set 2" has been obtained, and some propositions are
also explored. The present chapter aims to find formulae to compute the

number of neutrosophic crisp topological spaces having 2-NCrOSs, 3-
NCrOSs, and 4-NCrOSs.

Remark 5.0.1 (Salama, 2013)
Let of = (ot oy, ol5) and B = (B, Bo, B3) be any two neutrosophic
crisp sets on 2 (Using Definition 1.9.1). To perform intersection and
union on & and A, the following operations has been taken

(i) o N B = (h N By, oo N\ By, o3 U RBs),

(ii) o U B = (o URBy, cts N\ By, o3 N ABs).

Definition 5.0.1

A NCrT having k-NCrOSs on a non-empty set 2" is said to be a NCrT of
cardinality k. The number of NCrTs of cardinality k on & with | Z"| = n
will be denoted by T, (n, k).
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Example 5.0.1

Let 2 = {u,v,w} and <y = (0,0,{u}), then ™" = {¢, Xy, o}
form a NCrT on Z. So, T™NC" is a NCrT of cardinality 3 as it has 3-
NCrOSs.

5.1 Neutrosophic Crisp Topological Spaces with 2-NCrOSs

Proposition 5.1.1
For a non-empty finite set 2" with |Z"| = n,

(a) Tzr(n,2) =1,
(b) Tgr(n, k) =1, where k = | P ye.(Z)|.
Proof:

(a) The NCrT having 2-NCrOSs is the indiscrete NCrT which is .7 =
{6, Zy}. Therefore, (2, Ty) is the only NCrTS having 2-NCrOSs
as 7y contains only two members ¢ and 2. Hence, the num-
ber of neutrosophic crisp topological spaces (NCrTSs) having 2-
NCrOSsis 1 i.e., g, (n,2) = 1.

(b) The NCrT of cardinality k¥ = |Z ¢, (Z)] is the discrete NCrT
only. Hence, J%,(n, k) = 1, for k = | Zye.(Z)|.

Example 5.1.1
Let 2" = {u,v}, then, | Z"| = n = 2. Here, the neutrosophic crisp sub-
sets on X are
b, X, = (0,0, {u}), o5 = (D, {u},0), oty = ({u},0,0),
) = (0,0,{v}), = (0.{v},0), = ({v},0,0)
oy = (0, {u}, {v}), oy = ({u},0.{v}), = {u},{v},0),
2o = (0, {v}, {u}), i = ({v},0,{u}), P2 = ({v},{u},0).
In this case, the only NCrT having 2-NCrOSs is {¢.y, Z .y} and hence
Jer(n,2) = 1.
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Also, the NCrT having k = |2 ye.(Z")| = 14-NCrOSs is
{gb-/Vv '%:/Vv '/Qflv %7 %7 '52747 %7 %7 M) %7 %7 «527107 'Qflla Qfl?} and hence,
97%(71, ]{?) = 1,f0rk: = L@/V%r(e%)‘ = 14.

5.2 Neutrosophic Crisp Topological Spaces with 3-NCrOSs

Proposition 5.2.1
The number of NCrTs of cardinality 3 on a non-empty finite set 2 with
| 2| = n is given by the formula
Ter(n,3) = |Pyer(2)] - 2
= 3(2" ~2) + 31 [T, 6.2 (1) + X0y $G.3) ()]

Proof:
The NCrTs having 3-NCrOSs necessarily consists of a chain containing
oy, Zy and any other neutrosophic crisp subset <7, of 2 other than
¢y and X . Clearly, ¢y C oy C Zy. Itis observed that the number
of such o7 is equal to |2y, (Z7) | — 2. Since the set {¢, oy, Z .y}
form a NCrT and the total number of such NCrTs is | & y¢,. (Z7)| — 2.
Now, | Z.rer(2)] = (32"~ 4)+3L {31, 8(1,2)(}) + )y (. 3)(7) |-
Therefore,
Pran(2)-2 = [320 = ) +31 [T, 8(,2) () + Ty 5G.3) () }]
— 2

= (32— 6)+31 {0, $(.2)() + T0y $G.3) () }

= 3(2"=2)+31 { X1, 8. 2)(}) + )= 5G.3)() |-
Hence,

Ter(n,3) = |Pyer(2)] - 2
=3(2" = 2) +3! [ S0, 86,2 () + X $G.3) ()] -

Example 5.2.1
Let Z = {u,v}, then

Ter(2,3) =3(22 —2) + 31 {1,862 () + X7, 8.3 () }.
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Clearly, 25:3 S$(j,3) (3) = 0.

So, T%r(2,3) =6 +6{S(2,2)(5) + 0} = 12.

Consequently, Tg,(2,3) = 12 and these NCrTs having 3-NCrOSs are

listed below
{ow, s, Zy}, {bon, o, Zyt{bw, 3, Zy}, {bn, Ay, Xy},
{ow, s, Zwy 0w, Do, Zw}, {Qw, G2, X}, {Qw, S, X},
{0, Do, X}, {bn, G0, Zu}s {Qws D1, Xy} APws G2y, X}

5.3 Neutrosophic Crisp Topological Spaces with 4-NCrOSs

The NCrT having 4-NCrOSs must have the form 7 = {¢ 4, o/, B, Z v },
where o7 # % such that &/ N A, o/ U B € 7. To compute the number
of NCrTs with exactly 4-NCrOSs, we need to compute formulae for fol-
lowing cases:
Case l: Y NAB=0¢y,dUB=ZLy
Case2: Y NB=0¢y, A UB =0y
Case3: (Y NAB=o or B, o/ UPB = ¢y)or

(A NB=0d¢y,dUPB =g orB)
Cased: (Y NB=oA, A VB =9 )or (I NB =B, URB =)
CaseS: (INB=A, A IB=RB)or (A NB=RB,d B =9).
Proposition 5.3.1

For a non-empty finite set 2" with | Z"| = n, the number of NCrTs having
4-NCrOSs satisfying the condition in case 1 is obtained by the formula

S(n,2)(2" +1).

Proof:

In general, the number of partitions of a non-empty set 2~ with | 2| =
n into two blocks is given by &'(n,2). To obtain & N % = ¢ and
oA UAB = Xy, clearly &/ and Z must have the following two forms:

(i) o = (o, h,0) & B = (B, %, 0),
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(11) o = <,,(f1, (Da %> & % = <=%17 (Da %3>
Let us count the ways that they can be chosen.

(i) We have, o/ N B = (o) N\ By, oo N B>,0), and o U B = (ot U
B, oty By, D). Now, to get &/ N B = ¢y and o UB = Xy, we
must have, A NAB, =0, 4 UB, = Z and o/oNABs = (). This im-
plies that o7}, % is a partition of 2" and so, %, = 2 — /. There-
fore, o7, %) can be chosen in §(n, 2) ways. Now, if |.<#| = i then
|%,| = n—i. Since <% NPy = (), then the neutrosophic crisp subset
</ can be chosen out of n—i elementsin ("."), k= 0,1,2,...,n—i
ways with & = 0 representing the empty set. Therefore, .o% can be
chosen in Zg;é (”]j) — 277" ways. Similarly, %, can be chosen
outof n — (n — i) = i elements in 3} _, (1) = 2’ ways. Hence, the
total number of ways is §(n,2).2"7".2' = §(n, 2).2".

(il) We have, &/ N B = (oA N By, 0, o5 U PBs), and oF U B = (ofj U
B, 0, o5 N Bs). Now, to get o/ N B = ¢y and & U B = Ly,
we must have, 1 N B = 0, o5 U By = 2 and o U B, = X,
afs N A3 = () simultaneously. This shows that & and % is a
partition of 2" and .o/ = &%10 = B, B3 = ,@10 = /,. Therefore,
we can take .27 and % or @7 and As in 8(n, 2) ways.

From (i) and (ii), the total number of ways is &'(n,2)(2" + 1).
Hence, the number of NCrTs having 4-NCrOSs satisfying the condi-

tion in case 1 is obtained by the formula
S(n,2)(2" +1).

Proposition 5.3.2
The number of NCrTs having 4-NCrOSs on a non-empty set 2 satisfying

the condition in case 2 is obtained by the formula
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0D s x 2”}+Z{( ) }

where | Z'| = n.

Proof:
To obtain &/ N & = ¢4 and &/ U X = ¢y, clearly, &/ and & must have

the following two forms

() o = (0, o, o3) & B = (D, By, PB5) such that o3 U B3 = 2 and
%ﬂ%gzwand%ﬂﬁgzﬂ

(1) o = (0, o,0) & B = (0, B>, D) such that ot N By = .

From (i), o N B = (0, oty N By, o5 U B3), and o U B = ((), oty N
By, 3N ABs3). Since, oA UAB3 = 2 and /N A3 = (), which implies that
73 and A3 is a partition of 2 and say #B3 = 2 — o/3. Therefore, o735 and
P can be chosen in §'(n, 2) ways. Now, if || = ] =n—1i1<
i <n—1,and HNBy =), then%canbechosenlnz ( ) = QN
ways, and similarly, %, can be chosen out of n — (n — i) = ¢ elements
in > o (1) = 2' ways.

Therefore, the total number of ways is & (n, 2) x2" ' x2' i.e., §(n, 2) x
2",

From (i), & N B = (), oo N By, 1), o/ U B = (0, oo N HB5, D), and
oy N By = ). If |.aty U By| =i, 2 < i < n, then o U %, is chosen in

(7;) different ways and then it is partitioned into two disjoint blocks: this

is done in &' (4, 2) different ways. Therefore, the number of ways for form

(i) is Yory (7)S(,2).
Hence, the number of NCrTs having 4-NCrOSs satisfying condition

in case 2 is obtained by the formula
{$(n,2) ><2”}+Z{( ) i 2)}
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. w F{S8(n,2) x 2"} + Zn; { (7;)&(@ 2)} |

Proposition 5.3.3

For a non-empty finite set 2" with |Z"| = n, the number of NCrTs hav-
ing 4-NCrOSs satsifying conditions in case 3 is obtained by the formula
2(2" — 2)2.

Proof:

There are two forms
() o = (0,0, ) & B = (0, P>, D),
(i) o = (4,0,0) & B = (0, By, 0).

Let us count the ways that they can be chosen.

Clearly, these two forms agree with the conditions in case 3, i.e., for
the first kind, we have, & N A = (0,0, o) = o and &/ U B =
0,0,0) = ¢4, and for the second kind .o N B = (0,0,0) = ¢u
and &/ U % = (a,0,0) = /. Now, since ) C o5 C 2,0 C
PBy C Z such that |ofs| = [Py = i,1 < i < n—1s0, o4 and B>
are chosen in (’Z) different ways. This implies that .« and % are cho-
sen in (7) different ways. Therefore, the number of ways in this kind is
{Z?Qf (?)} X {Z;:f (?)} - (Z?:_f (?))2 = (2" - 2)2-

Similarly, the second kind is computed and is equal to (2" — 2).

Finally, the desired number of ways is 2 (2" — 2)*.

Proposition 5.3.4
For a non-empty set 2~ with |Z°| = n, the number of NCrTs having
4-NCrOSs satisfying condition in case 4 is obtained by the formula

n—2
{<n> (2”‘@'—2)} +291 +6 (% + T3),
=1

(4
where 7, = > 1 (1) S (i, k) (20 = 1)}, k=1,2,3.
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Proof:

Let o = (o, b, 9) and B = (B, P, P3). Then to satisfy the
condition (Y NAB =, A UL = )or (I NB =B, B =RB),
we must have, &), = %, 9 C Py, o3 = B3 or oy = $B1,PBy C

oy, o3 = B3 respectively . Then, we obtain four forms
() o = (0, o,0) & B = (0, B>, 0,) such that oty C Py or By C s,

(i) o = (0,0, %) & B = (0, By, o) and & = (H,0,0) & B =
(ath, B, 1),

(i) o = (A, o, 3) & B = (A, B, o3); exactly one of o, i =
1,2,31is 0 and @ C PBs.

(iv) o = (oA, by, o3) & B = (), B, 93) such thatall o7, i =1,2,3
are non-empty and .o% C %s.

Let us count the ways that they can be chosen.

(i) Let o C B and if || = i,1 < i < n —2theni < |Bs| =
k < n — 1. Therefore, % is chosen in (Z‘) ways and %, is chosen
in Zgzi)fl (”j_z) = 2"~" — 2 different ways. Since, ¢ varies from 1
to n — 2, @/ and A, are chosen in Z;:f (’;) (27H — 2)} different

ways. Hence, the neutrosophic crisp subsets o7 and % are chosen
in >0 2 {(") (27 - 2)} different ways.

(ii) Let |9 = i,1 < i < n — 1 then <7 is chosen in (7;) different
ways then it is partitioned into one block: this is done in (7, 1)
different ways and hence .«7. Next, in &, a3 N %> = () and so,
P, is chosen from n — i elements in Z;:i (”]_Z) = 277" — 1 differ-
ent ways and hence 4. Since ¢ varies from 1 to n — 1, we obtain

Z?:_ll (")$ (i, 1)(2"~" — 1) different ways for </ and 2.

Similarly, for &7 = (4, 0,0) & % = (<#1, P>, (), we have
S (1) S (6, 1)(27 — 1) different ways.
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(iii) We have, @/ Nafy = (). If |/ Uets| = 0,2 < i < n—1then &, o4 is
chosen in (7)8(2, 2) different ways. Since &) N %Ay = GNPy = 1),
S0, %, is chosen in (”J_Z), 1 < 5 < n — different ways. Therefore,
%P is chosen in ) 77, (”;Z) = 27~ _ 1 different ways. Together
o/ and 4 is chosen in 37~} (")$(i,2)(2"~" — 1) different ways. It
is known that we can arrange three element into three places in six
different ways, so, 7 has six forms, as three components of o are

the neutrosophic crisp subsets .7, , 273 and ().

Hence, the total number of ways to choose .« and Z is

62() 2)(2" — 1).

(iv) We have, o/ Ny = A Ny = o Nfy = 0. If | U oty U
Al =1i,3 <1 < n—1then @, of, of are chosen in (2‘)6’(2,3)
different ways. Since @/ N By = a3 N By = (), so, By is chosen
in (";’) 1 < j < n — i different ways. Therefore, %, is chosen
in ) .0 ! ( ‘) = 2"~ — 1 different ways. Together .« and % are
chosen in Z ()CS’ (i,3)2" " — 1 different ways. It is known that
we can arrange three elements into the three places in six different
ways, so, </ has 6 forms, as three components of .o/ are different

neutrosophic crisp subsets .27, .o% and .o7;.

Hence, the total number of ways to choose .« and % is

62() 3) (2" — 1).

Hence, we have the total

{(0) e -apy

j() (2" — 1)+
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i{@ (2”‘i—2)}+291+6(%+%),

i=1
where 75, = 277! (")$G, k) (2" —1)}, k = 1,2,3. This formula
gives the number of NCrTs having 4-NCrOSs satisfying condition in case
4.

Proposition 5.3.5
For a non-empty set & with |Z°| = n, the number of NCrTs having
4-NCrOSs satisfying condition in case 5 is obtained by the formula

nll <7Z> [(2" —2)+2 { (Zj <;> 2”3') F(2ni 1)} +
2%(?) gn—i +Z( ) 2”—1'—1)2+2<971+n_2 <7Z>9‘

i=0
where I, = 22:12 ") {Zz;l”l) (”;2) (2n=(+h) 1)} +

i (n;z) { i (9) (2n- () — 1)}}

S0 (T e -0+
P> ERp (";)(i)}@“ @) — 1))
Proof:

Here, the second component must always match to satisfy the conditions
in case 5.

For o/ = (0,0, o7;) we can choose % in two forms which are & =
(%1,0,0) and B = (%, 0, B3) such that B3 C . For this kind of &
we have ( ) different ways. For each <7, we can choose 4 = (%41, 0),0)
in 2" — 2 different ways. Next if &3 C o4, say | B3| = j < i = |9,
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we can choose % in 23;11 (;) 277 different ways and if %3 = %, say
| B3| = |a#| = i, then % can be chosen in 2"~% — 1 different ways.
Similarly, for &7 = (27,0, (), we have same number of choices for %
satisfying conditions in case 5.

Therefore, in this part we have

Ol (b

J

n—1

2.

1=1

' 2%—] + (2’)1—2 _ 1)
() ool
different ways.

For o7 = (0, .o%,0), we can choose B = ((), o, B3) and B =
(B, oy, (). Since % can be chosen in (’Z),z = 1,2,...,n — 1 dif-
ferent ways then %5 can be chosen in 2" % — 1 different ways for each i
and therefore, 4. As we have two forms of % and are symmetric, and ¢
varies from 1 to n — 1, we have the total 23"~ (M) (2" —1).

For o = ((), o5, <%5), we can choose B = (A, oy, Bs), 3 C P
and %, is any subset of 2~ different from 7 and #;. Then &/ and £

can be chosen in "1~ () {ZZiHl) (") (2n ) — 1)} +

-2
2 i

us take

(;

)

>
n—2
i=1

n—1
Jj=1

(

n—i
J

) {2 () -}
() {2 (

n—1

k

different ways. Let

)(211—(2—0—]4:) _ 1)}__|_

2?2—12 (7;) Z;:i (nj—z) { i:l (i) (2nf(i+j) — 1)}

Also, for &/ = (o, o, ()), we have equal number of choices as it is

= 9, for further use.

symmetric to .7 = ((), o5, of3). Hence, a total of 27, different ways.
For of = (), o, %), we can also choose B = (%, o/, ) which
can be done in 7' (") (2" —
For of = (ot o, of5), we can choose B = (A, ofp, HB3) such that
A C By, B3 C osand |ty =i,0 <i <n—2.1f |eh| = 0ie., o =
then Z can be chosen in ({)) 7, different ways. Further, if |%| = 1 then

1)? different ways.

n
1

n — 2, we have (nﬁQ) Tn—(n—2) 1.€., (n%)% different

2 can be chosen in ( )%_1 different ways. Continuing in the similar

way for ||
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ways. Thus, for &7 = (A, 9%, 75), we can choose % in Z?:_OQ (?) i
different ways.
Hence, the number of NCrTs having 4-NCrOSs satisfying conditions

in case 5 is obtained by the formula

(725 07) )

22( ) (2" — )+7§<?)(2m1)2+2%+n (?)%_

1=1 1

_|_

M

\]

|
o

Example 5.3.1
The follwing table gives the number of NCrTs having 4-NCrOSs for Z~ <

5.

Table 5.1: Number of NCrTSs having 4-NCrOSs on 2

Number of NCrTSs having 4-NCrOSs on 2~
ANB,AVR ZT=1 [Z[=2 |Z]=3 [Z]=4 [Z]=5
Case l: 4/ NAB = oy, 0 5 27 119 495
A IRB =Ly
Case2: 7/ NAB = oy, 0 5 30 137 570
I IJB =y
Case3: &/ N A = o, 0 8 72 392 1800
A JRB =N
Case 4: /' N A = o, 0 4 48 340 2040
A IR =
Case 5: / N AB = o, 0 14 216 1958 15240
A IRB =R
The total number of 0 36 393 2946 20145
NCrTSs  having 4-
NCrOSs on 2

Suppose, X = {a,b} ie., |Z| = 2, then from Table 5.1, we have,
Jer(2,4) = 36. These are
For Case 1:
{on, Zw, A3 = ({a}, 0
{ons Zw, Az = ({a}, 0,
0

{0, Zy,As = ({b},

,0), As = ({0}, 0,0},
0, A12 = ({0}, {a},0)},
,0), Ag = ({a}, {0}, 0)},
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{d)./Va ‘%:/V7 AS —
{on, Xy, Ag =

For Case 2:
{ow, Zy, Ay =
{ow, Zy, AL =
{ow, Zy, A1 =
{oy, Zy, Ay =
{ow, Xy, A7 =
For Case 3:
{ow, Zy, A1 =
{ow, Xy, AL =
{ow, Zy, Ay =
{ow, Zw, Ay =
{ow, Xy, Az =
{ow, Xy, Az =
{ow, Xy, As =
{ow, Xy, As =
For Case 4:
{ow, Zy, A1 =
{ow, Xy, Az =
{0, Zw, Ay =
{0, Zw,As =
For Case 5:
{ow, Zy, A1 =
1o, Zy, A1 =
{ow, Zy, Ay =
{ow, Zw, Ay =
{ow, Xy, Az =
1o, Zy, Az =

{6, Zw, Ara = ({b},{a}, 1), Ay =

({a},0.{b}), Air = ({6}, 0, {a})}.
({a}. {0}, 0), A1z = ({b},{a}, D) }.

a},0),
{a}),
{a}),
)

0,4 As
(0,0, Ay
(0,0, A7 =
(0,0,
(0.4

Lap),
S
101),
101),
)
)

D>§>D>
I

e =
s =
O

c?%

{a} 0,
{a},0,
0,
0,

>

ot

0
0
0),
0),

{0},
{0},

\V]

o~ o~ o~ o~ o~ o~ o~~~

PN

, Ajo
, Ag =

7:

(0,
<{a}
(0,0,
{0},
{a}
{a}

{b}), As =

(o,
(o,
(o,
(0,
(0, {a}, {0}), A2 =
(o,
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0,{a}), A

0, >6

0,{b}), A3 ={a},0,0)
0,

(0, {0}, 0)},
(0,0,{6})}
(0, {a}, {6})},

{b}), Ao = (0, {b}, {a})},
a}, {b}), Ao = (0, {b}, {a})}.

= (0, {6}, {a})},
({a}, {0}, 0)},
(0, {a}, {b})},
= ({0}, {a}, 0)}.

= ({a},0,0)},
({63,000},
2
({6},0,0)},
(0, {a},0)},

{a},{b}), A = ({b}, {a}, 0)},

(0, {a}, 0},



{or, Zw, Ag = ({a}, {0}, 0), A5 = (0,{b},0) },
{0, Zw, Ao = ({a}. {0}, 0), Ao = (0. {b}, {a})},
{0, X, A = (0,{b},{a}), A5 = (0.{0},0)},
{on, Zw, As = ({a},0,{b}), A5 = {{a},0,0)},
{ow, Zw, As = ({a}, 0,{b}), As = (0,0,{0}) },
{on, Zw, A1 = ({0}, 0,{a}), A1 = (
{0, Zwr, Ant = ({0}, 0, {a}), As = (
As a result, we have the total T, (2,4) = 36.

Y

0,0,{a})},
{0},0,0)}.

0
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