"A Study on Growth Parameters, Genetic and Nutritional Characterization of Candidate *Cordyceps* spp."

A Thesis submitted to Bodoland University for the Degree of Doctor of Philosophy in Biotechnology in the faculty of Science and Technology, 2024

Under the Guidance of

Supervisor: Prof. Sandeep Das

Submitted by

Vashkar Biswa

Ph.D. Scholar, Roll no-BIOT PHD-03, Registration No-BUP 0046/2013

Department of Biotechnology, Bodoland University

Kokrajhar, Assam

I, Vashkar Biswa, do hereby declare that the research work described in the thesis entitled "A Study on Growth Parameters, Genetic and Nutritional Characterization of Candidate Cordyceps spp." has been carried out by me for the award of degree of Doctor of Philosophy in the Department of Biotechnology, Faculty of Science and Technology, Bodoland University. The thesis is the result of my own investigation and no part of the thesis has been submitted to this or any other University for any other degree or diploma.

Place: Kokrajhar

Date: 18/05/2024

Vashkar Point Vashkar Biswa

Department of Biotechnology

Bodoland University

Kokrajhar, Assam

BODOLAND UNIVERSITY

Debargaon, P.O. Rangalikhata Kokrajhar- 783370, BTR, Assam, India

Website: https://buniv.edu.in/

Tel: 03661-277183; Fax: 03661-277183

May 10, 2024

Certificate

This is to certify that the work described in the thesis entitled "A Study on Growth Parameters, Genetic and Nutritional Characterization of Candidate Cordyceps spp." was carried out by Mr. Vashkar Biswa in the Department of Biotechnology, Bodoland University, Kokrajhar, Assam, under the guidance and supervision of Prof. Sandeep Das, Professor and Head, Department of Biotechnology, Bodoland University, Kokrajhar, Assam. Mr. Vashkar Biswa has fulfilled all the requirements under Ph.D. rules and regulations of Bodoland University for submitting his thesis for the award of Ph.D. degree. The thesis is the result of his own-investigation, and no part of the thesis is submitted for any other degree or diploma to this or any other University.

Prof. Sandeep Das, MSc, PhD

Head, Department of Biotechnology
Bodoland University
Kokrajhar, Assam, India
Mob No. +91 (86387-79417; 94357-01585)
E- mail: sandeepdas dna2003@yahoo.co.in

Prof.Sandcep Das
Head
Department of Blotechnology
Bodoland University

First and foremost, I extend my deepest gratitude to my Ph.D. supervisor, Prof. Sandeep Das, Professor & Head, Department of Biotechnology, Bodoland University, Kokrajhar, Assam, whose guidance, support, and expertise have been invaluable throughout this journey. Your unwavering dedication to my research and your insightful feedback have significantly contributed to the completion of this thesis.

I would like to express my heartfelt appreciation to my senior, Dr. Raju Ali, for your mentorship and encouragement. Your perspective and constructive criticism have been instrumental in shaping my research endeavours.

I am thankful to the teaching and non-teaching staffs of the Department of Biotechnology, Bodoland University for assistance and cooperation facilitated for my academic pursuits. Their professionalism and dedication to excellence have created a conducive learning environment.

Special thanks to the Technology Incubation Centre and Advanced Level Institutional Biotech Hub for providing state-of-the-art facilities and technical assistance that have enhanced the quality and scope of my research work at Bodoland University.

I am grateful to the Office of PCCF (WL and BD) Arunachal Pradesh and the Sikkim Diversity Board for their cooperation and assistance in accessing essential permission and resources for my research, which have enabled me to explore innovative ideas and fostered interdisciplinary collaboration.

To my dear friend Miss Nitisha Boro, your unwavering support and belief in me have been invaluable throughout my doctoral journey. Your support has been a source of strength and inspiration, shaping both my academic pursuits and personal growth. I am deeply grateful for your presence in my life. Thank you for being my confidant and cheerleader.

To my senior colleagues and lab mates, I extend my sincere appreciation for your camaraderie, intellectual exchange, and support throughout this academic journey. Your insights and encouragement have been invaluable.

Last but not least, I would like to express my deepest gratitude to my parents Mr. Hari Biswa and Mrs. Geeta Biswa, and Brother Bidur Biswa for their unwavering love,

encouragement, and understanding. Their support has been my pillar of strength, motivating me to persevere during challenging times.

I am indebted to all individuals and institutions mentioned above for their contributions, without which this research endeavour would not have been possible. Thank you for being an integral part of my academic and personal growth.

Vashkar Biswa

Date: 10/05/2024

List of Tables

Table No.	Table Legend	Page No.
Table 3.1	Sample Details	35-36
Table 3.2.	Details of primer used in the study	41
Table 3.3	List of samples	47
Table 4.1	Description of collected sample	52-56
Table 4.2	Concentration of Genomic DNA (ng/µL)	58-59
Table 4.3	Description of samples submitted to Gene Bank	60
Table 4.4	Nucleotide Blast results	61
Table 4.5	Protein content	71-72
Table 4.6	Total dietary fiber	72-73
Table 4.7	DPPH scavenging activity	73-74
Table 4.8	FRAP value	75
Table 4.9	ABTS radical scavenging activity	76
Table 4.10	Detailed antimicrobial activity in Zone of Inhibition (in mm)	79-80
Table 4.11	IC ₅₀ value for MTT assay of MCF 7 (Breast Cancer) Cell line	81-83
Table 4.12	IC ₅₀ value for MTT assay of HELA (Cervical Cancer) Cell line	83-85
Table 4.13	IC ₅₀ value for MTT assay of SKOV3 (Ovarian Cancer) Cell line	85-87
Table 4.14	Results of LDH Assay on MC-7 Cell line	88-89
Table 4.15	Results of LDH Assay on HeLa Cell line	90-91
Table 4.16	Results of LDH Assay on SKOV3 cell line	92-93
Table 4.17	HPLC analysis	94
Table 4.18	Bioactive compounds identified from CBUAP1	98-99
Table 4.19	Bioactive compounds identified from CBUB1	100
Table 4.20	Bioactive compounds identified from CBUS3 (fruiting)	101
Table 4.21	Bioactive compounds identified from CBUS3 (Mycelia)	102-103

List of Figures

Figure No.	Figure Legend	Page No.
Fig 3.1.	Cleaning and processing of sample (CBUS3)	37
Fig 3.2.	Tissue culture on PDA	38
Fig 4.1	Sample photoplate	51
Fig 4.2	Pure culture of Ophiocordyceps sinensis (CBUS3); Fruiting bodies of	57
	Cordycep militaris grown on different rice varieties	
Fig 4.3	Agarose gel (0.8%) run of Genomic DNA;	58
Fig 4.4	Agarose gel (0.8%) run of Genomic DNA;	58
Fig 4.5	Agarose gel (1.2 %) electrophoresis of amplified PCR product;	59
Fig 4.6	Maximum Likelihood Tree of CBUS1-S4 (ITS) constructed using Mega	63
	Version 11.0.13	
Fig 4.7	Maximum Likelihood tree of CBUS1-S4 (COI) constructed using Mega	63
	Version 11.0.1	
Fig 4.8	Maximum Likelihood tree of CBUAP1(ITS) constructed using constructed	65
	using Mega Version 11.0.13	
Fig 4.9	Maximum Likelihood tree of CBUAP1(COI) constructed using constructed	66
	using Mega Version 11.0.13	
Fig 4.10	Maximum Likelihood tree of samples collected from Bhutan (ITS)	68
	constructed using Mega Version 11.0.13	
Fig 4.11	Maximum Likelihood Tree of host larva collected from Bhutan (COI)	68
	constructed using Mega Version 11.0.13	
Fig 4.12	Microscopic characteristics of CBUS3	69
Fig 4.13	SEM analysis of CBUS3	70
Fig 4.14	SEM analysis of CBUB1	70
Fig 4.15	SEM analysis of CBUAP1	71
Fig 4.16	DPPH Standard calibration curve	73
Fig 4.17	FRAP Standard calibration curve	74
Fig 4.18	ABTS Standard calibration curve	75
Fig 4.19	Assessment of antimicrobial efficacy on Mycobacterium smegmatis;	77
Fig 4.20	Assessment of antimicrobial efficacy on Escherichia coli;	77
Fig 4.21	Assessment of antimicrobial efficacy on Staphylococcus aureus;	77
Fig 4.22	Assessment of antimicrobial efficacy on Bacillus cereus;	78

Fig 4.23	Assessment of antimicrobial efficacy on Psudomonas aeruginosa;	78
Fig 4.24	Assessment of antimicrobial efficacy on Salmonella typhimurium;	78
Fig 4.25	MTT Assay of Standard Doxorubicin	81
Fig 4.26	MTT Assay of CBUAP1	81
Fig 4.27	MTT Assay of CBUS3- Mycelia	81
Fig 4.28	MTT Assay of Standard Doxorubicin	83
Fig 4.29	MTT Assay of CBUS3- Fruiting	83
Fig 4.30	MTT Assay of Standard Doxorubicin	85
Fig 4.31	MTT Assay of CBUS3- Fruiting	85
Fig 4.32	LDH Assay of CBUAP1, CBUS3- Fruiting, CBUS3- Mycelia and standard	87
	Doxorubicin on MCF-7 cell line	
Fig 4.33	LDH Assay of CBUAP1, CBUS3- Fruiting, CBUS3- Mycelia and standard	89
	Doxorubicin on HeLa cell line	
Fig 4.34	LDH Assay of CBUAP1, CBUS3- Fruiting, CBUS3- Mycelia and standard	91
	Doxorubicin on SKOV3 cell line	
Fig 4.35	HPLC Chromatogram of CBUS3 (Fruiting)	95
Fig 4.36	HPLC Chromatogram of CBAP1	95
Fig 4.37	HPLC Chromatogram of CBUB1	95
Fig 4.38	HPLC Chromatogram of CBUB2	96
Fig 4.39	HPLC Chromatogram of CBUCM (Cordyceps militaris) grown on Brown Rice	96
Fig 4.40	HPLC Chromatogram of CBUCM (<i>Cordyceps militaris</i>) grown on Basmati Rice	96
Fig 4.41	HPLC Chromatogram of CBUCM (<i>Cordyceps militaris</i>) grown on Joha Rice	97
Fig 4.42	HPLC Chromatogram of CBUCM (<i>Cordyceps militaris</i>) grown on Barni Rice	97
Fig 4.43	HPLC Chromatogram of CBUCM (<i>Cordyceps militaris</i>) grown on Black Rice	97
Fig 4.44	GCMS chromatogram of CBAP1	104
Fig 4.45	GCMS chromatogram of CBUB1	104
Fig 4.46	GCMS chromatogram of CBUS3(fruiting)	105
Fig 4.47	GCMS chromatogram of CBUS3(Mycelia)	105