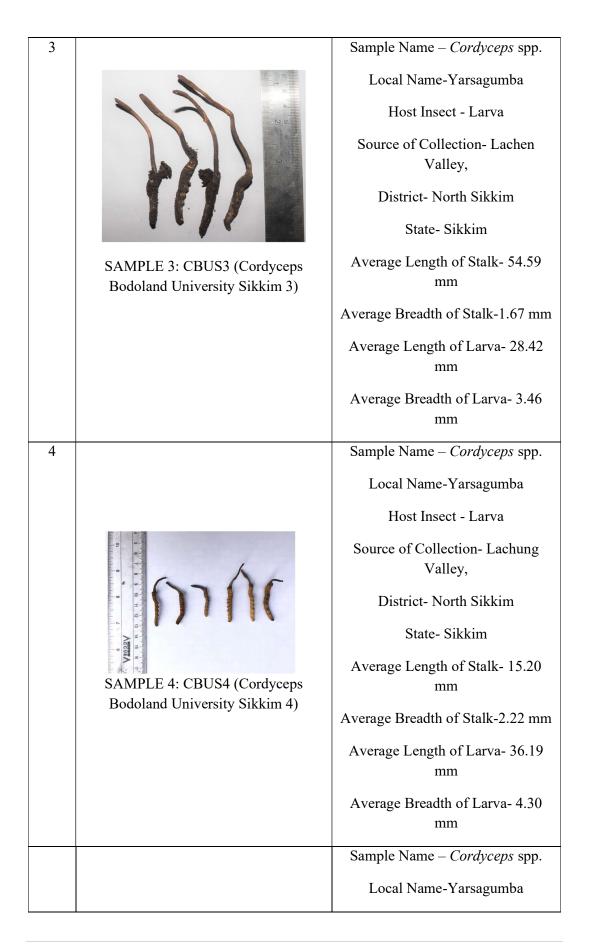
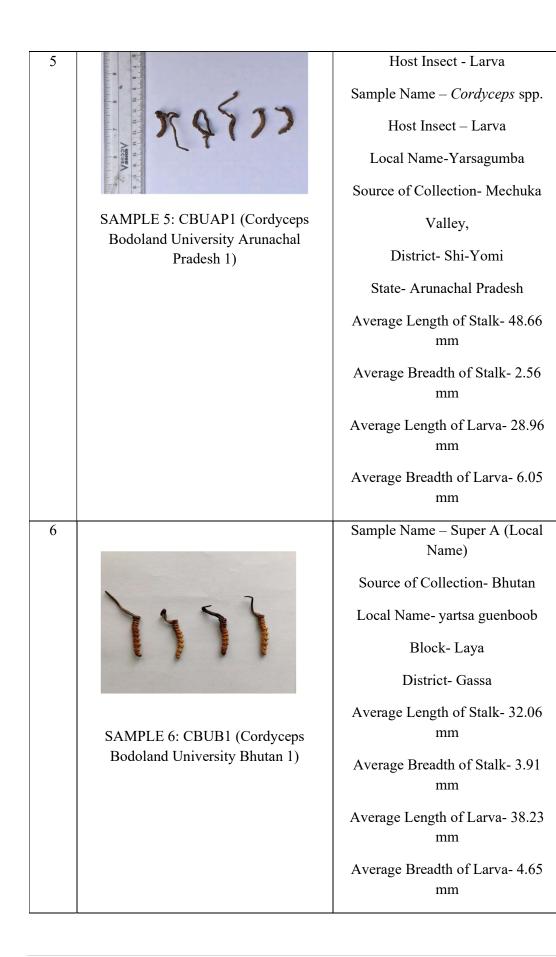
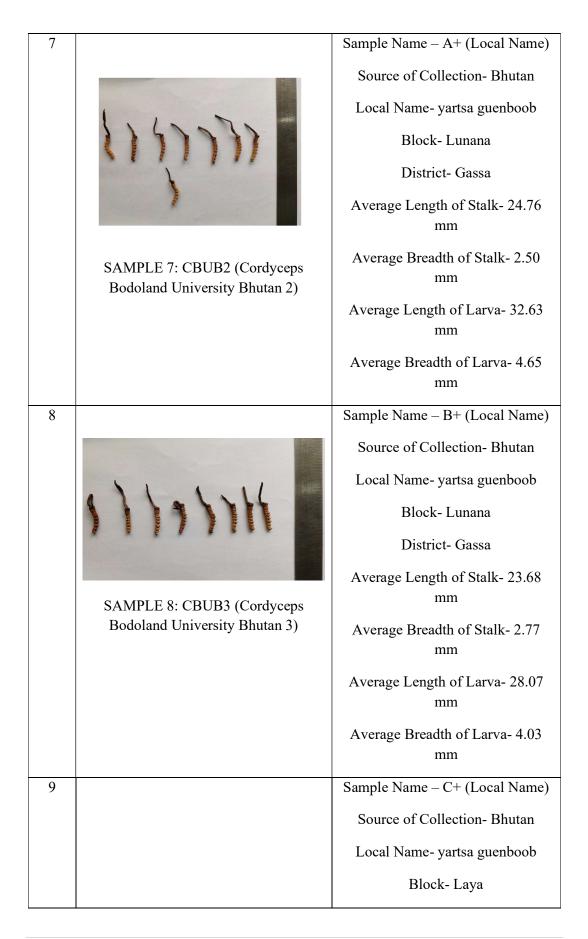
4.1 Survey and sample collection:

The fresh sample (CBUS3) collected from Lachen Valley, North Sikkim, were freezedried and submitted to the Sikkim State Forest Herbarium (SSFH), Deorali, Sikkim Vide (SSFH SK005007). The samples obtained from Gassa (Lunana and Laha block) District of the Kingdom of Bhutan and Mechuka Valley of Shi-Yomi District of Arunachal Pradesh, India, were submitted to Bodoland University Botanical Herbarium, Department of Botany, Bodoland University, and accession numbers were obtained (CBUS1-BUBH0000881; CBUS2-BUBH0000882; CBUS4-BUBH0000883; CBUAP1-BUBH0000880; CBUB1-BUBH0000876; CBUB2-BUBH0000877; CBUB3-BUBH0000878; CBUB4-BUBH0000879)

Fig 4.1. A. *Ophiocordyceps sinensis* (CBUS3) growing in high altitude area of North Sikkim; B. *Ophiocordyceps sinensis* (CBUS3) collected from Sikkim; C. *Ophiocordyceps sinensis* (CBUS3) after cleaning; D. *Ophiocordyceps liangshensis* (CBUAP1) collected from Arunachal Pradesh; E. *Cordyceps miltaris* standard Strain; F. Wild *Cordyceps sp.* photographed at Ultapani forest Range, Assam


4.2 Morphological Studies:


Morphological Characteristics:


The morphological characteristics like local name and source of collection has been depicted in table 4.1

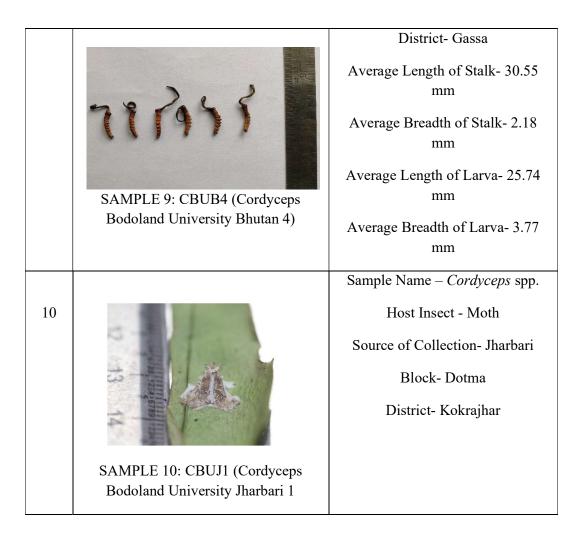

Sample **Sample Description** SI. No. Sample Name – Cordyceps spp. 1 Local Name-Yarsagumba Host Insect - Larva Source of Collection- Lachung Valley, 12 District- North Sikkim SAMPLE 1: CBUS1 (Cordyceps Bodoland University Sikkim 1) State-Sikkim Average Length of Stalk- 19.6 mm Average Breadth of Stalk- 1.4 mm Average Length of Larva- 23.35 mm Average Breadth of Larva- 2.77 mm 2 Sample Name – *Cordyceps* spp. Local Name-Yarsagumba Host Insect - Larva Source of Collection- Lachung Valley, District- North Sikkim State-Sikkim Average Length of Stalk- 15.59 SAMPLE 2: CBUS2 (Cordyceps mm Bodoland University Sikkim 2) Average Breadth of Stalk-2.62 mm Average Length of Larva- 30.91 mm Average Breadth of Larva- 3.76 mm

Table 4.1. Description of collected sample

4.3 Isolation and Pure Culture:

Sample CBUS3 was the only sample collected freshly and was cultured in Petri plates containing potato dextrose agar media supplemented with 0.5 g/L magnesium sulphate and 50 mg thiamine hydrochloride. The mycelia started to grow after 5–7 days, followed by a subculture to obtain a pure culture of the sample. Similarly standard strain of *Cordyceps militaris* was also sub cultured in potato dextrose agar media supplemented with 0.5 g/L magnesium sulphate and 50 mg thiamine hydrochloride.

4.4 Cultivation of Cordyceps militaris:

The cultivation of *Cordyceps militaris* was carried out on different rice varieties to study the importance of rice as a substrate and also to compare its nutritional properties with the sample collected from wild.

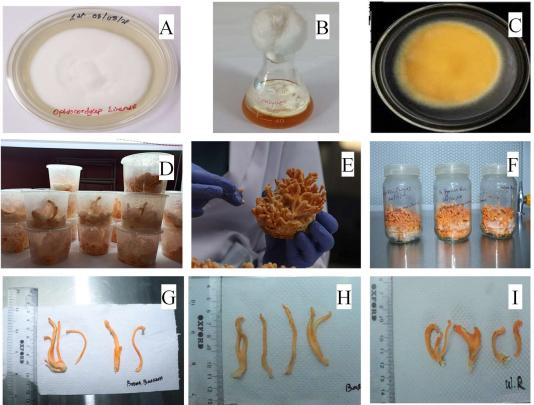


Fig 4.2. A. Pure culture of *Ophiocordyceps sinensis* (CBUS3); B. Mycelia of *Ophiocordyceps sinensis* (CBUS3) grown on Potato dextrose broth; C. Pure culture of *Cordyceps militaris* (CBUCM); D. Fruiting bodies of *Cordyceps militaris* (CBUCM); E. Harvesting of fruiting bodies; F. *Cordyceps militaris* grown on different rice substrates; G. Fruiting bodies of *Cordyceps militaris* grown on Basmati rice; I. Fruiting bodies of *Cordyceps militaris* grown on Basmati rice.

4.5 Molecular Studies:

4.5.1 DNA isolation:

The DNA was isolated from the collected samples and subjected to electrophoresis for confirmation.

4.5.2 Electrophoresis:

The isolated DNA were visualized in 0.8% agarose gel electrophoresis.

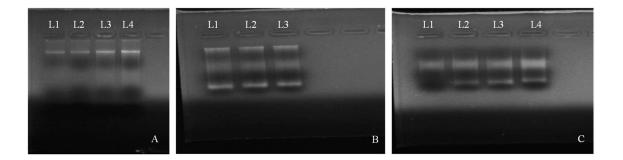


Fig 4.3. Agarose gel (0.8%) run of Genomic DNA; A. Sample CBUS; L1- CBUS1: L2-CBUS2: L3- CBUS3: L4- CBUS4; B. Sample CBUAP1; L1- L3- CBUAP1; C. Sample CBUB; L1- CBUB1: L2-CBUB2: L3- CBUB3: L4- CBUB4

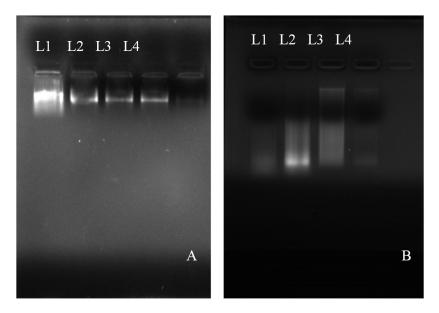


Fig 4.4. Agarose gel (0.8%) run of Genomic DNA; A. Sample CBUCM; L1-L4-CBUCM; B. sample CBUS3 Mycelia L1-L4

4.5.3 DNA Quantification:

DNA quantification was performed by Qubit 4 Fluorometer (Invitrogen) following the manufacturer's protocol. Concentration of DNA are depicted on Table 4.2

Table 4.2. Concentration Genomic DNA (ng/µL).

Sl. No.	Sample Name	Concentration (ng/µL)	
1	CBUS1	196	

2	CBUS2	201
3	CBUS3	186
4	CBUS4	215
5	CBUS3- Mycelia	213
6	CBUAP1	178
7	CBUB1	258
8	CBUB2	244
9	CBUB3	215
10	CBUB4	226
11	CBUCM	235

4.6 Sequencing:

The amplicon was visualized in 1.2 % agarose gel and photographs were taken on E-Gel imager System (Life Technologies, USA) (Figure 4.4) and concentration of DNA were evaluated using Qubit 4 fluorometer. The amplicon was then sequenced on an applied biosystem (Model No-AB13730XL) DNA Sequencer following sanger sequencing method. The sequenced raw data was processed in Bioedit version 7.2.5 and consensus sequence was made and submitted to Gene bank after identification (Table 4.3)

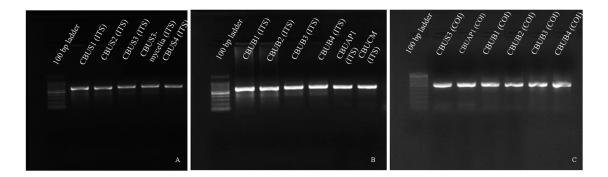


Fig 4.5. Agarose gel (1.2 %) electrophoresis of amplified PCR product; A. L1- 100 bp ladder, L2-CBUS3(ITS): L3- CBUS3- Mycelia (ITS): L4- CBUB1(ITS): L5-CBUB2 (ITS): L6- CBUB3 (ITS): L7- CBUB4(ITS); B. L1- 100 bp ladder: L2 & L3-CBUAP1 (ITS): : L4- CBUCM (ITS); C. L1- 100 bp ladder, L2-CBUS3(COI): L3-CBUAP1 (COI): L4- CBUB1(COI): L5-CBUB2 (COI): L6- CBUB3(COI): L7-CBUB4(COI)

Sl. No	Source	Sequenc e Length	Description	Gene Bank Accession Number
1	Ophiocordyceps sinensis (CBUS3- Fruiting Body)	559 bp	Internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene and internal transcribed spacer 2, complete sequence; and large subunit ribosomal RNA gene, partial sequence.	MW990119
2	<i>Thitarodes</i> sp. (CBUS3- Host)	633 bp	cytochrome c oxidase subunit I (COX1) gene, partial cds; mitochondrial.	MZ956161
3	Ophiocordyceps sinensis (CBUS3- Mycelia)	549 bp	internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene and internal transcribed spacer 2, complete sequence; and large subunitribosomal RNA gene, partial sequence.	
4	Ophiocordyceps liangshanensis (CBUAP1)	612 bp	internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene and internal transcribed spacer 2, complete sequence; and large subunitribosomal RNA gene, partial sequence.	MZ318360.1
5	<i>Thitarodes</i> sp. (CBUAP1- Host)	601 bp	cytochrome c oxidase subunit I (COX1) gene, partial cds; mitochondrial.	PP715863
7	Cordyceps militaris (CBUCM)	535 bp	internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene and internal transcribed spacer 2, complete sequence; and large subunitribosomal RNA gene, partial sequence.	MZ749691.1
8	Ophiocordyceps sinensis (CBUB1)	579 bp	internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene and internal transcribed spacer 2, complete sequence; and large subunitribosomal RNA gene, partial sequence.	MN626441. 1
9	<i>Thitarodes</i> spp. (CBUB2- Host)	361 bp	cytochrome c oxidase subunit I (COX1) PP58. gene, partial cds; mitochondrial. PP58.	
10	Ophiocordyceps sinensis (CBUB2)	571 bp	internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene and internal transcribed spacer 2, complete sequence; and large subunitribosomal RNA gene, partial sequence.	MW774384. 1

Table 4.3. Description of samples submitted to Gene Bank

Table 4.4. Nucleotide Blast results

Sl. No	Sample	Query Cover	Percent Identity	Closest Match with accession number
1	<i>Ophiocordyceps</i> <i>sinensis</i> (CBUS3- Fruiting Body)	97 %	99.58	KJ175199.1
2	<i>Thitarodes</i> sp. (CBUS3- Host)	100 %	95.56	KC994917.1
3	Ophiocordyceps sinensis (CBUS3- Mycelia)	99 %	100	AB067720.1
4	Ophiocordyceps liangshanensis (CBUAP1)	97 %	92.78	KJ524691.1
5	Cordyceps militaris (CBUCM)	100%	100%	ON553385.1
6	Ophiocordyceps sinensis (CBUB1)	98 %	88.47	KT232019.1
7	Ophiocordyceps sinensis (CBUB2)	98 %	99.60	KM197540.1

4.7 Phylogenetic analysis:

4.7.1 *Ophiocordyceps sinensis* collected from Sikkim (CBUS1-S4): Fruiting body and Host:

Current Name: (Index Fungorum)

Ophiocordyceps sinensis (Berk.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, in Sung, Hywel-Jones, Sung, Luangsa-ard, Shrestha & Spatafora, Stud. Mycol. 57: 46 (2007) (Index Fungorum)

Synonymy: Cordyceps sinensis (Berk.) Sacc., Michelia 1(no. 3): 320 (1878) Hirsutella sinensis X.J. Liu, Y.L. Guo, Y.X. Yu & W. Zeng, Acta Mycol. Sin. 8(1): 37 (1989)
Hirsutella sinensis X. Fang, Mycological Society of China, Academic Annual Meeting Summary: 203 (2013)
Sphaeria sinensis Berk., London J. Bot. 2: 207 (1843)
Torrubia sinensis (Berk.) Tul. & C. Tul., Select. fung. carpol. (Paris) 3: 13 (1865) (https://www.indexfungorum.org/names/names.asp)

The ITS amplicon of sample Cordyceps Bodoland University Sikkim was subjected to NCBI Nucleotide BLAST, subsequently, similar sequences were retrieved. The phylogenetic analysis of the ITS region of stroma and COI gene of the host was performed separately. A total of 22 sequences of Cordyceps spp. were retrieved from NCBI for the phylogenetic analysis of the ITS region of the stroma, and 19 sequences were retrieved for the phylogenetic analysis of the COI region of the host. The sequences were subject to multiple alignment using fast fourier transform (MAFFT) online tool. The alignment was optimized visually, and ambiguous regions were excluded from subsequent phylogenetic analyses. The best model was calculated by the model testing in Mega (version 11.0.13), and the Tamura-Nei model was chosen (Tamura and Nei 1993). Pairwise distance matrices were generated using Tamura-Nei model, and the phylogenetic analysis was performed in the Mega version 11.0.13. An NJ tree (Jukes and Cantor, 1969) with bootstrapping was constructed Initial tree(s) for the heuristic search were obtained by applying the Neighbor-Joining method to a matrix of pairwise distances estimated using the Tamura-Nei model. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 1.9527)) This analysis involved 26 nucleotide sequences. There was a total of 923 positions in the final dataset. Evolutionary analyses were conducted in MEGA X (Kumar et al., 2018). Volvariella volvacea is used as an outgroup for phylogenetic analysis of the ITS region and Anthera assama as an outgroup for COI region of host larva. The comparative phylogenetics results using ITS sequence indicated that the presence of the sample collected from Sikkim clubbed with the sequences of O. sinensis sequences (China) retrieved from NCBI. The presence in the same clade diverging from the other related species confirmed that the sample belong to O. Sinensis, which is an entomo-parasitic fungus infecting larva of various genera (Thitarodes spp., Endoclita spp., Napialus spp.). The phylogenetic analysis of host was performed to confirm the larva. The sequence of COI of larva from the sample was compared to that of the common larva of O. sinensis. The sequences were retrieved from NCBI, and phylogenetic analysis was carried out.

Subsequently, the sample clubbed and grouped with the sequences with *Hepialidae* spp. which confirmed that the larva belongs to *Thitarodes* spp. The tree from Bayesian inference showed an identical tree topology.

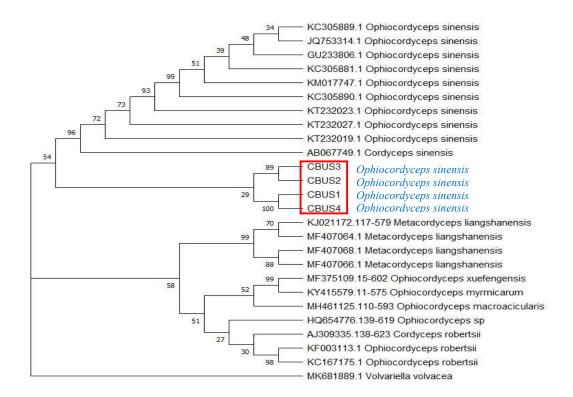


Fig 4.6. Maximum Likelihood Tree of CBUS1-S4 (*ITS*) constructed using Mega Version 11.0.13

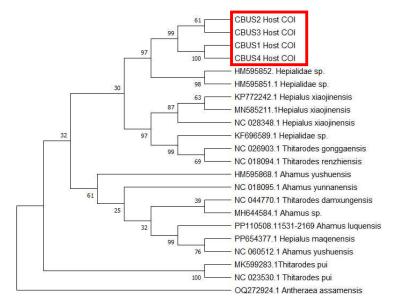


Fig 4.7. Maximum Likelihood tree of CBUS1-S4 (*COI*) constructed using Mega Version 11.0.1

4.7.2 *Ophiocordyceps liangshanensis* collected from Arunachal Pradesh (CBUAP1):

Current Name: (Index Fungorum)

Ophiocordyceps liangshanensis (M. Zang, D.Q. Liu & R.Y. Hu) H. Yu, Y. Wang, Y.D. Dai, Zhu L. Yang & Y.B. Wang, in Wang, Dai, Yang, Guo, Wang, Yang, Ding & Yu, *Mycobiology* 49(4): 302 (2021)

Synonymy:

Cordyceps liangshanensis M. Zang, D.Q. Liu & R.Y. Hu, Acta bot. Yunn. 4(2): 174 (1982)

Metacordyceps liangshanensis (M. Zang, D.Q. Liu & R.Y. Hu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, in Sung, Hywel-Jones, Sung, Luangsa-ard, Shrestha & Spatafora, Stud. Mycol. 57: 35 (2007)

Papiliomyces liangshanensis (M. Zang, D.Q. Liu & R.Y. Hu) Luangsa-ard, Samson &Thanakitp., in Mongkolsamrit, Khonsanit, Thanakitpipattana, Tasanathai, Noisripoom, Lamlertthon, Himaman, Houbraken, Samson &Luangsa-ard, Stud. Mycol. 95: 240 (2020)

The PCR product of ITS and COI was 612 bp and 601 bp respectively. The amplicon was then sequenced on an applied biosystem (Model No-AB13730XL) DNA Sequencer following sanger sequencing method. The sequenced raw data was processed in Bioedit version 7.2.5 and consensus sequence was made. The ITS amplicon of CBUAP1 (fruiting body) covered a query of 94%, which is identical with O. liangshanensis. The sequencing data of COI gene had query cover of 94% identity to Hepialidae spp. A total of 28 nucleotide sequences were taken up for the phylogenetic analysis including an outgroup from NCBI database. The sequences were subject to multiple sequence alignment using fast fourier transform (MAFFT) online tool. The alignment was optimized visually, and ambiguous regions were excluded from subsequent phylogenetic analysis. The best model was calculated by the model testing in Mega (version 11.0.13), and the T92+G model was chosen (Kimura et al., 1980). Pairwise distance matrices were generated using Kimura models of nucleotide substitutions (Kimura et al., 1980, Kumar et al., 2018; Swofford et al., 1998), and the phylogenetic analysis was performed in the Mega version 11.0.13. An ML tree with bootstrapping was constructed with distance measured by the Jukes Cantor distance model and Kimura's two parameter distance model (Jukes and Cantor, 1969). To assess the confidence of phylogenetic relationships, the bootstrap test (Felsenstein, 1985) was conducted with 1000 resampling for ML analysis. The phylogenetic relationships of O. liangshanensis were also analyzed using the Bayesian method (Ronquist et al., 2012). *Volvariella volvaceae* was used as an outgroup for phylogenetic analysis of the *ITS* region. The comparative phylogenetics results using ITS sequence indicated that the presence of the sample collected from Arunachal Pradesh clustered with the sequences of *Ophiocordyceps liangshanensis* sequences (China) retrieved from NCBI. The presence in the same clade diverging from the other related species confirmed that the sample belong to *O. liangshanensis* (*Metacordyceps lianshanensis*), which is an entomoparasitic fungus infecting larva of various genera (*Thitarodes, Endoclita, Napialus*). Similarly, the *COI* gene of host was subjected to phylogenetic analysis which clubbed with *Hapialidae* spp. confirming the host. The processed sequence of CBUAP1 was submitted to gene bank and accession number MZ318360.1 was obtained.

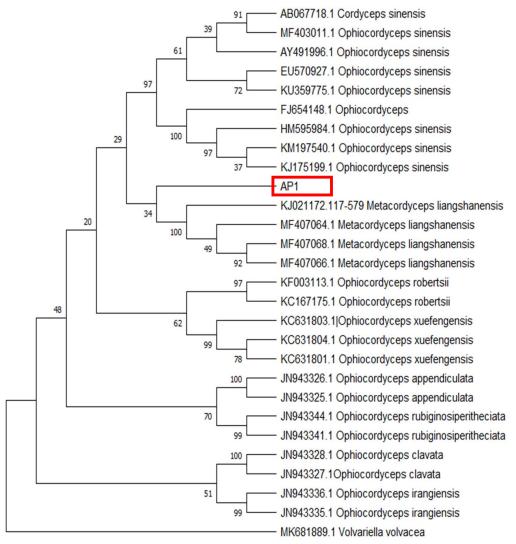


Fig 4.8. Maximum Likelihood tree of CBUAP1(*ITS*) constructed using constructed using Mega Version 11.0.13

Fig 4.9. Maximum Likelihood tree of CBUAP1(*COI*) constructed using constructed using Mega Version 11.0.13

4.7.3 Ophiocordyceps sinensis (CBUB1-B4) collected from Bhutan:

Current Name: (Index Fungorum)

Ophiocordyceps sinensis (Berk.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, in Sung, Hywel-Jones, Sung, Luangsa-ard, Shrestha & Spatafora, Stud. Mycol. 57: 46 (2007) (Index Fungorum)

Synonymy:

Cordyceps sinensis (Berk.) Sacc., Michelia 1(no. 3): 320 (1878)

Hirsutella sinensis X.J. Liu, Y.L. Guo, Y.X. Yu & W. Zeng, Acta Mycol. Sin. 8(1): 37 (1989)
Hirsutella sinensis X. Fang, Mycological Society of China, Academic Annual Meeting Summary: 203 (2013)
Sphaeria sinensis Berk., London J. Bot. 2: 207 (1843)
Torrubia sinensis (Berk.) Tul. & C. Tul., Select. fung. carpol. (Paris) 3: 13 (1865) (https://www.indexfungorum.org/names/names.asp)

The sequenced raw data was processed in Bioedit version 7.2.5 and consensus sequence was generated. The phylogenetic analysis was performed by using the Maximum Likelihood method and Tamura-Nei model (Tamura and Nei, 1993). The bootstrap consensus tree inferred from 1000 replicates (Felsenstein, 1985) is taken to represent the evolutionary history of the taxa analyzed (Felsenstein, 1985). Branches corresponding to partitions reproduced in less than 50% bootstrap replicates are collapsed. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches (Felsenstein, 1985). Initial tree(s) for the heuristic search were obtained by applying the Neighbor-Joining method to a matrix of pairwise distances estimated using the Tamura-Nei model. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 1.4200)). This analysis involved 23 nucleotide sequences. There was a total of 796 positions in the final dataset. Evolutionary analyses were conducted in MEGA X (Kumar et al., 2018). Volvariella volvacea was used as an outgroup for phylogenetic analysis of the ITS region and Anthera assama as an outgroup for COI region of host larva. The comparative phylogenetics results using ITS sequence indicated that the presence of the sample collected from Bhutan clubbed with the sequences of O. Sinensis sequences (China) retrieved from NCBI. The presence in the same clade diverging from the other related species confirmed that the sample belong to O. Sinensis, which is an entomo-parasitic fungus infecting larva of various genera (*Thitarodesspp., Endoclitaspp., Napialus spp.*). The phylogenetic analysis of host was performed to confirm the larva. The sequence of COI of larva from the sample was compared to that of the common larva of O. Sinensis. The sequences were retrieved from NCBI, and phylogenetic analysis was carried out. Subsequently, the sample clubbed and grouped with the sequences with *Hepialidae* spp. which confirmed that the larva belongs to *Thitarodes* spp. The tree from Bayesian inference showed an identical tree topology (Ronquist, et al., 2012).

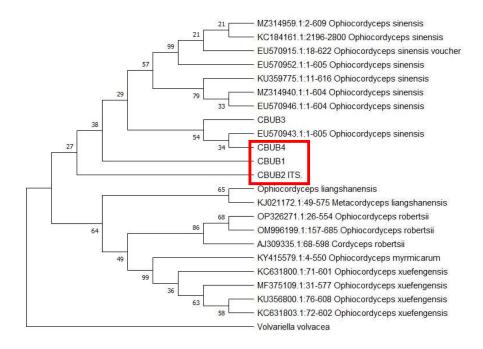
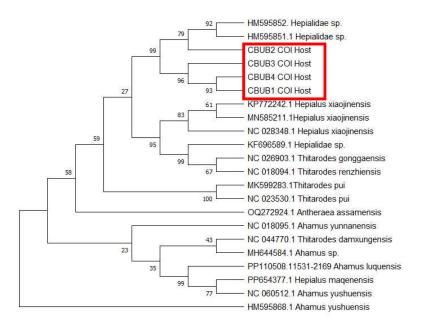



Fig 4.10. Maximum Likelihood tree of samples collected from Bhutan (*ITS*) constructed using constructed using Mega Version 11.0.13

Fig 4.11. Maximum Likelihood Tree of host larva collected from Bhutan (*COI*) constructed using constructed using Mega Version 11.0.13

4.8 Microscopic Characteristics of CBUS3:

Details of macro-morphological characters of *O. sinensis* collected from Lachen Valley, North Sikkim

Microscopic characteristics of stroma:

Stroma sparingly cylindrical, dark pinkish (fresh) and brown when dried, 38-40 mm in length, and about 2.5–3 mm in diameter. The total diameter of the transverse section is 298 µm, length and breadth of the asci were 84 µm and 33 µm, respectively. Perithecia oval to elliptical, elongated, and grouped at the fertile portion of stroma. Mycelia embedded with the asci. The outer layer of the stroma stained dark with Congo red. Larva body resembling a silkworm, 29–32 mm in length and 4–5 mm in breadth. Yellowish in color with 8 pairs of the leg. Light-creamish. Mycelia branch with 3-µm diameter. The fruiting body (stroma) is identified as *O. sinensis*, the host larva is identified as *Thitarodes* spp., and mycelia of fruiting body to be *O. sinensis*.

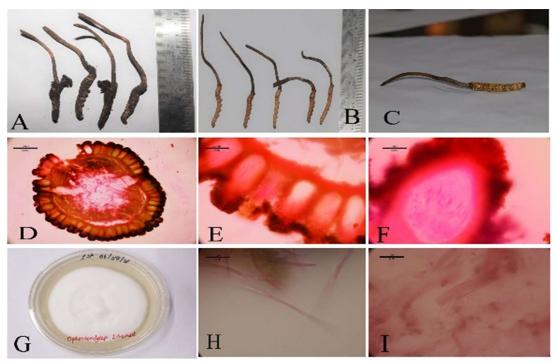


Fig 4.12. A. *O. sinensis*; B. *O. sinensis* cleaned; C. *O. sinensis* with 8 pairs of legs on the abdomen and 4 pairs at the center; D. Transverse section of stroma; E. Perithecia at 20X; F. Perithecia at 40X G. Mycelial culture of *O. sinensis* grown on PDA media; H. Mycelia of *O. sinensis*; I. Central portion of stroma

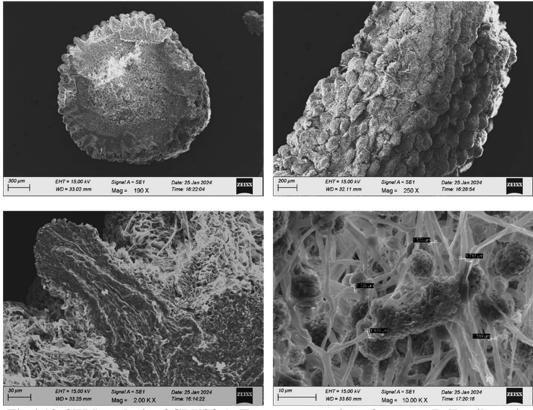


Fig 4.13. SEM analysis of CBUS3 A. Transverse section of stroma: B. Fertile region of stroma at 250X: C. Transverse section of fertile region of stroma 2000X: D. Mycelia at 10000X

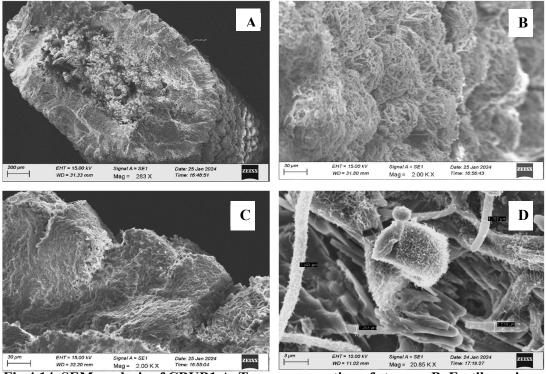


Fig 4.14. SEM analysis of CBUB1 A. Transverse section of stroma: B. Fertile region of stroma at 300X: C. Transverse section of fertile region of stroma 2000X: D. Mycelia at 20850X

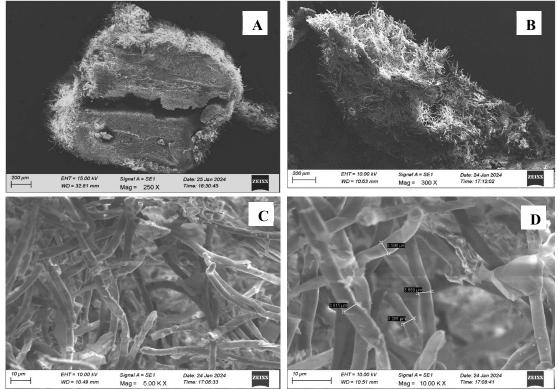


Fig 4.15. SEM analysis of CBUAP1 A. Transverse section of stroma: B. Mycelia of stroma at 300X: C. Mycelia of stroma 5000X: D. Mycelia at 10000

4.9. Protein Estimation:

The protein content of all the samples were investigated. CBUS4 (*Ophiocordyceps sinensis*) exhibited the highest protein content of 14.1% (\pm 0.01), followed by CBUCM (*Cordyceps militaris*) cultivated on Joha Rice of 13.96% (\pm 0.02), CBUCM (*Cordyceps militaris*) grown on Brown Rice exhibited the lowest protein content of 5.25% (\pm 0.02). The detailed protein content of samples is depicted on Table 4.5.

Sl. No.	Sample	Protein Content (%)
1	CBUS1 (Ophiocordyceps sinensis)	$13.5^d (\pm 0.01)$
2	CBUS2 (Ophiocordyceps sinensis)	$13.80^{c} (\pm 0.03)$
3	CBUS3 (Ophiocordyceps sinensis)	13.00 ^e (±0.01)
4	CBUS3- Mycelia (Ophiocordyceps sinensis)	13.9 ^{bc} (±0.04)

 Table 4.5. Protein content

5	CBUS4 (Ophiocordyceps sinensis)	14.1 ^a (±0.01)
6	CBUAP1 (Ophiocordyceps liangshanensis)	$12.70^{f} (\pm 0.04)$
7	CBUCM (Cordyceps militaris) grown on Brown Rice	$5.25^{i} (\pm 0.02)$
8	CBUCM (Cordyceps militaris) grown on Black Rice	$8.75^g (\pm 0.08)$
9	CBUCM (Cordyceps militaris) grown on Joha Rice	13.96 ^b (±0.02)
10	CBUCM (Cordyceps militaris) grown on Rozana Rice	$8.75^g (\pm 0.05)$
11	CBUCM (Cordyceps militaris) grown on Barni Rice	$7.52^{h} (\pm 0.05)$

4.10. Total Dietary Fiber:

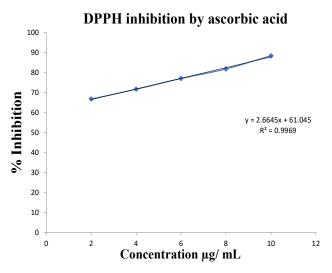
Total Dietary fiber of the samples was evaluated, CBUS3 (*Ophiocordyceps sinensis*) demonstrated the highest total dietary fiber content of 42.72% (± 0.05), followed by CBUS4 (*Ophiocordyceps sinensis*) of 41.33% (± 0.04) and CBUS1 (*Ophiocordyceps sinensis*) of 40.01% (± 0.01). CBUS3- *Mycelia* (*Ophiocordyceps sinensis*) exhibited the lowest total dietary fiber content of 21.33(± 0.08). Among the *Cordyceps militaris* samples cultivated on different rice varieties, brown rice exhibited the highest fiber content of 34.25% (± 0.03). Conversely, *Cordyceps militaris* grown on Black Rice and Joha Rice exhibited lower fiber percentages of 23.24% (± 0.08) and 23.26% (± 0.09) respectively. The detailed total dietary fiber content of samples is depicted on Table 4.6.

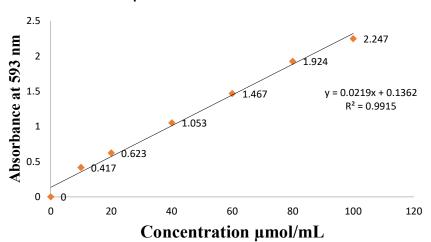
Sl.	Sample	Total Dietary Fiber (%)
No.		
1	CBUS1 (Ophiocordyceps sinensis)	40.01 ^c (±0.01)
2	CBUS2 (Ophiocordyceps sinensis)	$39.56^d (\pm 0.08)$
3	CBUS3 (Ophiocordyceps sinensis)	$42.72^a (\pm 0.05)$
4	CBUS3- Mycelia (Ophiocordyceps sinensis)	21.33 ^{<i>j</i>} (±0.08)
5	CBUS4 (Ophiocordyceps sinensis)	$41.33^{b} (\pm 0.04)$
6	CBUAP1 (Ophiocordyceps liangshensis)	$38.55^e (\pm 0.04)$
7	CBUCM (Cordyceps militaris) grown on Brown Rice	$34.25^{f} (\pm 0.03)$
8	CBUCM (Cordyceps militaris) grown on Black Rice	23.24 ^{<i>i</i>} (±0.08)

9	CBUCM (Cordyceps militaris) grown on Joha Rice	23.26^i (±0.09)
10	CBUCM (Cordyceps militaris) grown on Rozana Rice	27.28 ^g (±0.04)
11	CBUCM (Cordyceps militaris) grown on Barni Rice	$26.89^{h} (\pm 0.03)$

4.11. DPPH Scavenging Activity:

The study evaluated the radical scavenging activity of different samples of *Cordyceps* mushrooms. The findings indicated a favorable outcome that *Cordyceps* mushrooms exhibit substantial radical scavenging activity. The DPPH radical scavenging activity was found to be highest on CBUS3 *(Ophiocordyceps sinensis)*62.2 (\pm 0.07), followed by CBUS3- Mycelia *(Ophiocordyceps sinensis)* and lowest on *Cordyceps militaris* grown on brown rice 44.55 (\pm 0.01). The detailed inhibition of samples is depicted on Table 4.7.




Fig 4.16. DPPH Standard calibration curve

Sl. No.	Sample	IC50 Value
1	CBUS1 (Ophiocordyceps sinensis)	$60.5^c (\pm 0.04)$
2	CBUS2 (Ophiocordyceps sinensis)	$60.33^c (\pm 0.04)$
3	CBUS3 (Ophiocordyceps sinensis)	$62.2^a (\pm 0.07)$
4	CBUS3- Mycelia (Ophiocordyceps sinensis)	$61.52^{b} (\pm 0.05)$
5	CBUS4 (Ophiocordyceps sinensis)	$58.97^d (\pm 0.02)$
6	CBUAP1 (Ophiocordyceps liangshanensis)	$56.28^e (\pm 0.08)$

7	CBUCM (Cordyceps militaris) grown on Brown Rice	$44.55^{j} (\pm 0.01)$
8	CBUCM (Cordyceps militaris) grown on Black Rice	$47.28^{i} (\pm 0.04)$
9	CBUCM (Cordyceps militaris) grown on Joha Rice	$49.35^{g} (\pm 0.04)$
10	CBUCM (Cordyceps militaris) grown on Rozana Rice	$50.11^{f}(\pm 0.08)$
11	CBUCM (Cordyceps militaris) grown on Barni Rice	$48.05^{h} (\pm 0.08)$

4.12 FRAP (Ferric Reducing Antioxidant Power):

The Ferric Reducing Antioxidant Potential of the collected samples were analyzed and it was found that, CBUS3 *(Ophiocordyceps sinensis)* exhibited highest ferric reducing ions with FRAP value of 58.89(\pm 0.04), followed by CBUS3- *Mycelia (Ophiocordyceps sinensis)*. Among the *Cordyceps militaris* samples grown on Joha rice exhibited the highest ferric reducing ions with FRAP value of 51.33(\pm 0.04) and lowest was observed *Cordyceps militaris* grown on Brown rice with 44.55 (\pm 0.05) frap value. The results were expressed as µmol Fe²⁺ equivalent, 1 mg aqueous extract was found to be equivalent to 100 µmol of Fe²⁺ against the standard curve prepared using ferrous sulphate.

FeSO₄ standard curve for FRAP

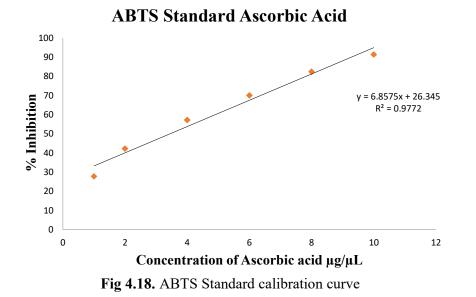

Fig 4.17. FRAP Standard calibration curve

Table 4.8. FRAP value

Sl. No.	Sample	FRAP Value
1	CBUS1 (Ophiocordyceps sinensis)	$52.89^e (\pm 0.02)$
2	CBUS2 (Ophiocordyceps sinensis)	$53.45^d (\pm 0.03)$
3	CBUS3 (Ophiocordyceps sinensis)	$58.89^{a} (\pm 0.04)$
4	CBUS3- Mycelia (Ophiocordyceps sinensis)	$54.54^{c} (\pm 0.04)$
5	CBUS4 (Ophiocordyceps sinensis)	$56.97^{b} (\pm 0.05)$
6	CBUAP1 (Ophiocordyceps liangshanensis)	$48.67^{g} (\pm 0.05)$
7	CBUCM (Cordyceps militaris) grown on Brown Rice	$44.55^{j} (\pm 0.05)$
8	CBUCM (Cordyceps militaris) grown on Black Rice	$46.38^i (\pm 0.07)$
9	CBUCM (Cordyceps militaris) grown on Joha Rice	$51.33^{f} (\pm 0.04)$
10	CBUCM (Cordyceps militaris) grown on Rozana Rice	$47.25^{h} (\pm 0.03)$
11	CBUCM (Cordyceps militaris) grown on Barni Rice	$48.78^{g} (\pm 0.04)$

4.13 ABTS radical scavenging activity:

The ABTS radical scavenging activity were studied from the extracts of the collected samples and found that CBUS3 *(Ophiocordyceps sinensis)* had the highest potential to scavenge ABTS free radicals with IC₅₀ value of 389.95µg (±0.05) followed by CBUS3-Mycelia *(Ophiocordyceps sinensis)* with IC₅₀ value of 385.28 µg (±0.02), while lowest potential to scavenge ABTS was recorded in *Cordyceps militaris* grown on Barni rice with IC₅₀ value 345.21µg (±0.06) respectively as given in table 4.10.

Sl. No.	Sample	IC ₅₀ Value
1	CBUS1 (Ophiocordyceps sinensis)	370.51 ^{<i>d</i>} µg (±0.01)
2	CBUS2 (Ophiocordyceps sinensis)	$362.88^{f} \mu g (\pm 0.08)$
3	CBUS3 (Ophiocordyceps sinensis)	389.95 ^{<i>a</i>} µg (±0.05)
4	CBUS3 Mycelia (Ophiocordyceps sinensis)	$385.28^{b} \ \mu g \ (\pm 0.02)$
5	CBUS4 (Ophiocordyceps sinensis)	$380.66^{c} \ \mu g \ (\pm 0.04)$
6	CBUAP1 (Ophiocordyceps liangshanensis)	366.85 ^e µg (±0.03)
7	CBUCM (Cordyceps militaris) grown on Brown Rice	$356.56^{g} \ \mu g \ (\pm 0.04)$
8	CBUCM (Cordyceps militaris) grown on Black Rice	$349.25^i \mu g (\pm 0.05)$
9	CBUCM (Cordyceps militaris) grown on Joha Rice	$347.37^{j} \mu g (\pm 0.06)$
10	CBUCM (Cordyceps militaris) grown on Rozana Rice	$351.75^{h} \ \mu g \ (\pm 0.04)$
11	CBUCM (Cordyceps militaris) grown on Barni Rice	345.21 ^k μ g (±0.06)

Table 4.9. ABTS radical scavenging activity

4.14 Antimicrobial activity:

The methanolic aqueous (70:30) of the samples was evaluated for its antimicrobial properties against six bacterial strains, the samples exhibited with variable intensity. CBUB2 and Cordyceps militaris grown on Joha rice exhibited the highest inhibition against Staphylococcus aureus with 27 mm zone of inhibition while other samples also exhibited potential inhibition against the bacteria in the concentration of 200 µg/ mL extract concentration. Similarly, CBUS3 exhibited the highest inhibition against Salmonella typhi and Mycobacterium smegmatis with 20 mm and 19 mm zone of inhibition respectively, while Cordyceps militaris grown on Basmati rice exhibited lowest inhibition of 2 mm against Salmonella typhi. Cordyceps militaris grown on Basmati rice recorded the highest inhibition of *Pseudomonas aeruginosa i* with 18 mm zone of inhibition, while CBUS3 and Cordyceps militaris grown on Black rice exhibited lowest inhibition zone of 9 mm. CBUS3 exhibited highest inhibition of 14 mm against Escherrichia coli, while Cordyceps militaris grown on Joha rice exhibited lowest inhibition zone of 7 mm. Similarly, CBUS3 exhibited highest inhibition of 14 mm against Bacillus cereus, while CBUB2 exhibited lowest inhibition zone of 8 mm. The detailed zone of inhibition of all tested the samples, standard antibiotic (Ampicillin 10 µg) and DMSO (Positive control).

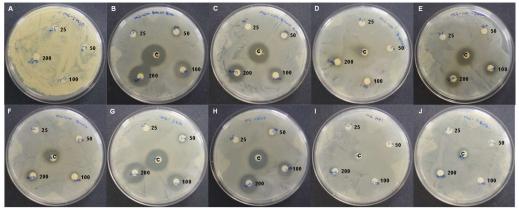


Fig 4.19. Assessment of antimicrobial efficacy on *Mycobacterium smegmatis;* A. DMSO; B. CBUCM (cultivated on Brown rice); C. CBUCM (Cultivated on Black rice); D. CBUCM (cultivated on Basmati rice); E. CBUCM (cultivated on Joha rice); F. CBUCM (cultivated on Barni rice); G. CBUS3(Mycelia); H. CBUS3(fruiting); I. CBUAP1; and J. CBUB1

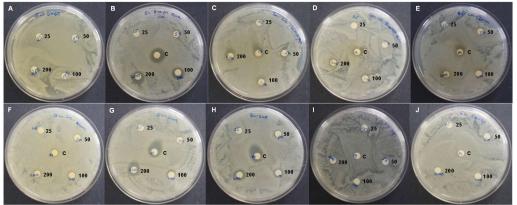


Fig 4.20. Assessment of antimicrobial efficacy on *Escherichia coli*; A. DMSO; B. CBUCM (cultivated on Brown rice); C. CBUCM (Cultivated on Black rice); D. CBUCM (cultivated on Basmati rice); E. CBUCM (cultivated on Joha rice); F. CBUCM (cultivated on Barni rice); G. CBUS3(mycelia); H. CBUS3(fruiting); I. CBUAP1; and J. CBUB1

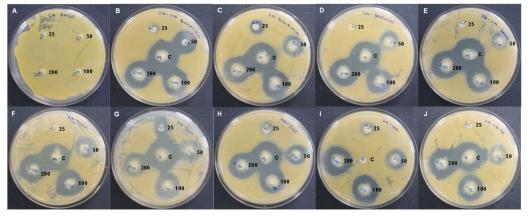


Fig 4.21. Assessment of antimicrobial efficacy on *Staphylococcus aureus;* A. DMSO; B. CBUCM (cultivated on Brown rice); C. CBUCM (Cultivated on Black rice); D. CBUCM (cultivated on Basmati rice); E. CBUCM (cultivated on Joha rice); F. CBUCM (cultivated on Barni rice); G. CBUS3(mycelia); H. CBUCBUS3(fruiting); I. CBUAP1; and J. CBUB1

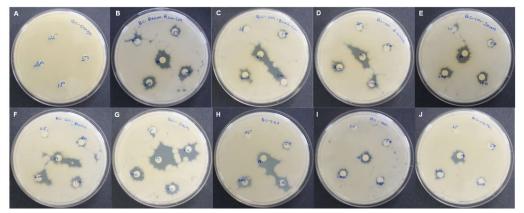


Fig 4.22. Assessment of antimicrobial efficacy on *Bacillus cereus;* A. DMSO; B. CBUCM (cultivated on Brown rice); C. CBUCM (Cultivated on Black rice); D. CBUCM (cultivated on Basmati rice); E. CBUCM (cultivated on Joha rice); F. CBUCM (cultivated on Barni rice); G. CBUS3(mycelia); H. CBUS3(fruiting); I. CBUAP1; and J. CBUB1

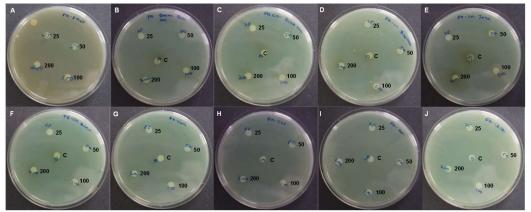


Fig 4.23. Assessment of antimicrobial efficacy on *Psudomonas aeruginosa*; A. DMSO; B. CBUCM (cultivated on Brown rice); C. CBUCM (Cultivated on Black rice); D. CBUCM (cultivated on Basmati rice); E. CBUCM (cultivated on Joha rice); F. CBUCM (cultivated on Barni rice); G. CBUS3(mycelia); H. CBUS3(fruiting); I. CBUAP1; and J. CBUB1

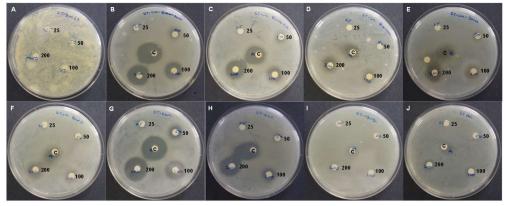


Fig 4.24. Assessment of antimicrobial efficacy on *Salmonella typhimurium*; A. DMSO; B. CBUCM (cultivated on Brown rice); C. CBUCM (Cultivated on Black rice); D. CBUCM (cultivated on Basmati rice); E. CBUCM (cultivated on Joha rice); F. CBUCM (cultivated on Barni rice); G. CBUS3(mycelia); H. CBUS3(fruiting); I. CBUAP1; and J. CBUB1

 Table: 4.10. Detailed antimicrobial activity in Zone of Inhibition (in mm)

Bacteria Name	Sample Concen tration	CBU BrR	CB UBI kR	CBU Basm atiR	CBUJ ohaR	CBU barni R	CB US KM	CB US KF	CB UA P1	CBUB 2
Escherri	25	NI	NI	NI	NI	NI	NI	NI	NI	NI
chia coli	50	NI	8	NI	NI	NI	7	7	NI	NI
	100	9	8	7	NI	NI	9	8	NI	NI
	200	12	8	8	7	NI	14	10	NI	NI
	Antibio tics	15	15	11	13	11	15	14	NI	NI
	MIC	100	50	100	200	NI	50	50	NI	NI
Mycobac	25	NI	NI	NI	NI	NI	NI	NI	NI	NI
terium smegmat	50	11	8	NI	7	NI	8	7	NI	NI
is	100	14	12	7	9	11	12	11	NI	7
	200	13	14	9	14	13	19	11	NI	9
	Antibio tics	19	18	11	18	16	22	11	NI	13
	MIC	50	50	100	50	100	50	50	NI	100
Staphylo	25	NI	8	NI	NI	NI	13	7	NI	NI
coccus aureus	50	19	17	11	18	8	23	13	4	17
	100	22	23	22	24	22	24	23	14	23
	200	24	26	26	27	24	25	24	23	27
	Antibio tics	31	29	28	NI	31	28	25	29	22.9
	MIC	50	25	50	50	50	25	25	50	50
Bacillus	25	0.7	NI	NI	NI	NI	NI	NI	NI	NI
cereus	50	9	7	NI	NI	8	13	7	7	NI
	100	12	8	8	8	11	13	0	9	7
	200	13	9	9	11	13	14	11	11	8
	Antibio tics	19	14	13	15	18	22	14	16	12
	MIC	25	50	100	100	50	50	50	50	100

Salmone	25	NI	NI	NI	NI	NI	NI	NI	NI	NI
lla typhi	50	7	8	NI	7	NI	12	7	NI	NI
	100	13	12	8	9	9	18	8	8	7
	200	2	16	11	13	11	20	11	9	9
	Antibio tics	25	18	13	17	14	24	14	11	11
	MIC	50	50	100	50	100	50	50	100	100
Pseudom	25	NI	NI	NI	NI	NI	NI	NI	NI	NI
onas aerugino	50	NI	NI	NI	NI	NI	NI	NI	NI	NI
sa	100	NI	8	7	NI	NI	NI	7	NI	NI
	200	NI	9	18	NI	NI	NI	9	NI	NI
	Antibio tics	NI	12	11	13	NI	13	13	NI	NI
	MIC	NI	100	100	NI	NI	NI	100	NI	NI
DMSO	25	NI	NI	NI	NI	NI	NI	NI	NI	NI
	50	NI	NI	NI	NI	NI	NI	NI	NI	NI
	100	NI	NI	NI	NI	NI	NI	NI	NI	NI
	200	NI	NI	NI	NI	NI	NI	NI	NI	NI

4.15 Anticancer Activity:

4.15.1 MTT Assay:

We studied the cytotoxicity of extracts prepared from the fruiting bodies and mycelia of CBUS3 (*Ophiocordyceps sinensis*) and CBUAP1 (*Ophiocordyceps liangshanensis*) collected from Sikkim and Arunachal Pradesh in the MCF-7, HeLa, and SKOV3 cell lines. CBUAP1 exerted moderate cytotoxicity against MCF-7 with an IC₅₀ of 292.8; CBUS3 (fruiting) did not exert active cytotoxicity (IC₅₀> 100 µg/mL); however, extract CBUS3 (mycelia) exhibited potent activity with an IC₅₀value of 77.48. Extracts CBUAP1 and CBUS3 (fruiting) were not active (IC₅₀> 100 µg/mL). However, CBUS3 (Mycelia) exerted moderate activity against MCF-7, with IC50 of 294.3 against the HeLa cell line. The extracts CBUAP1 and CBUS3 (fruiting) exerted low cytotoxic activity with no active activity (IC₅₀> 100 µg/ml); however, extract CBUS3 (mycelia) exhibited an IC₅₀ of 185.6 against the SKOV3 cell line.

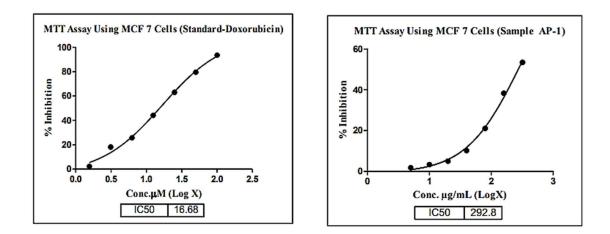


Fig: 4.25. MTT Assay of Standard Doxorubicin Fig: 4.26. MTT Assay of CBUAP1

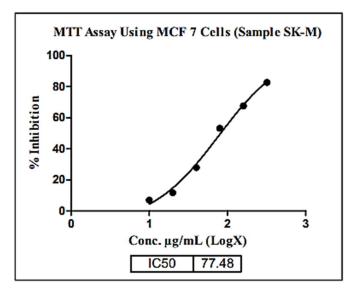


Fig: 4.27. MTT Assay of CBUS3- Mycelia

Table 4.11. IC₅₀ value for MTT assay of MCF 7 (Breast Cancer) Cell line

MCF 7						
Test Sample	Conc. in µM	OD @ 590nm	% Inhibition	IC50 in µM		
Vehicle Control	0	0.626	0.00			
	1.560	0.612	2.29	-		
	3.125	0.513	18.11			

	6.25	0.465	25.72	
Doxorubicin	12.5	0.350	44.16	16.68
-	25	0.231	63.06	
-	50	0.128	79.53	
-	100	0.040	93.56	
Test Sample	Conc. in μg/mL	OD @ 590nm	% Inhibition	IC50 in µM
Vehicle Control	0	0.626	0.00	
	5	0.615	1.75	
-	10	0.605	3.35	
-	20	0.595	5.01	292.8
CBUAP1	40	0.562	10.22	
(Ophiocordyceps _ liangshanensis)	80	0.494	21.09	
-	160	0.386	38.34	
-	320	0.291	53.45	
Test Sample	Conc. in μg/mL	OD @ 590nm	% Inhibition	IC50 in µM
Vehicle Control	5	0.621	0.80	
	10	0.611	2.40	
-	20	0.598	4.47	
-	40	0.524	16.29	
CBUS3 (Fruiting)	80	0.507	19.01	
	160	0.496	20.77	
Ophiocordyceps sinensis				1

Test Sample	Conc. in μg/mL	OD @ 590nm	% Inhibition	IC50 in µM
Vehicle Control	5	0.601	3.99	
	10	0.582	7.03	
	20	0.557	11.01	
CBUS3 (Mycelia)-	40	0.451	27.96	77.48
Ophiocordyceps	80	0.293	53.19	
sinensis	160	0.205	67.25	
	320	0.102	83.77	

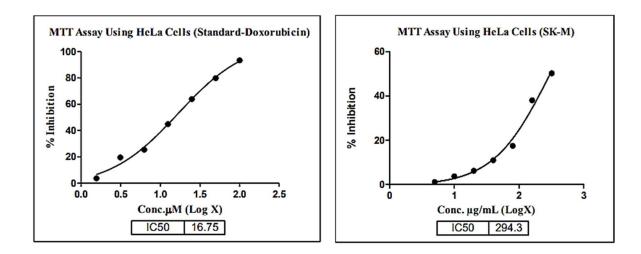


Fig: 4.28. MTT Assay of Standard Doxorubicin Fig: 4.29. MTT Assay of CBUS3-Fruiting

HELA						
Test Sample	Conc. in µM	OD @ 590nm	% Inhibition	IC50 in µM		
Vehicle Control	0	0.636	0			
	1.560	0.613	3.59			
	3.125	0.512	19.55			
	6.25	0.474	25.47			

Test Sample	Conc. in µg/mL	OD @ 590nm	% Inhibition	IC50 in µM
sinensis	320	0.476	25.16	
Ophiocordyceps	160	0.504	20.74	
CBUS3 (Fruiting)-	80	0.542	14.74	
-	40	0.586	7.82	
-	20	0.611	3.97	
	10	0.623	2.12	
Vehicle Control	5	0.634	0.31	
Test Sample	Conc. in μg/mL	OD @ 590nm	% Inhibition	IC50 in µM
	520	0.737	51.75	
-	160 320	0.520	18.29 31.73	
liangshanensis)	80	0542	14.85	
CBUAP1 (Ophiocordyceps	40	0.595	6.42	
-	20	0.609	4.30	
-	10	0.623	2.03	
	5	0.630	0.94	
Vehicle Control	0	0.636	0.00	
Test Sample	Conc. in µg/mL	OD @ 590nm	% Inhibition	IC50 in µM
	100	0.042	93.35	
	50	0.128	79.85	
-	25	0.229	63.96	
Doxorubicin	12.5	0.351	44.88	16.75

Vehicle Control	5	0.629	1.10	
	10	0.613	3.69	
	20	0.597	6.18	
CBUS3 (Mycelia)	40	0.566	10.97	294.3
Ophiocordyceps	80	0.525	17.49	
sinensis	160	0.413	35.05	
	320	0.291	54.29	

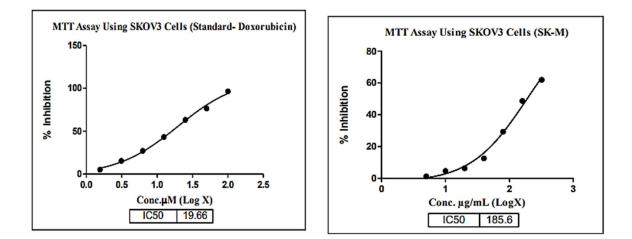


Fig: 4.30. MTT Assay of Standard Doxorubicin Fig: 4.31. MTT Assay of CBUS3-Fruiting

SKOV3						
Test Sample	Conc. in µM	OD @ 590nm	% Inhibition	IC50 in µM		
Vehicle Control	0	0.558	0			
	1.560	0.530	5.09			
	3.125	0.473	15.26			
	6.25	0.408	26.95	19.66		
Doxorubicin	12.5	0.317	43.22			
	25	0.205	63.22			

Table 4.13. IC₅₀ value for MTT assay of SKOV3 (Ovarian Cancer) Cell line

	50	0.131	76.61	
	100	0.020	96.44	
Test Commu	Carra in	OD () 500	0/ 1-1:1:1:4:	IC in a M
Test Sample	Conc. in μg/mL	OD @ 590nm	% Inhibition	IC50 in µM
Vehicle Control	0	0.558	0.00	
	5	0.547	1.97	
_	10	0.542	2.85	
-	20	0.504	9.68	
CBUAP1	40	0.475	14.87	
(Ophiocordyceps liangshanensis)	80	0.428	23.30	
	160	0.399	28.49	
	320	0.376	32.62	
Test Sample	Conc. in μg/mL	OD @ 590nm	% Inhibition	IC ₅₀ in µM
Vehicle Control	5	0.554	0.72	
	10	0.542	2.87	
-	20	0.521	6.63	
_	40	0.495	11.29	
CBUS3	80	0.461	17.38	
(Fruiting) Ophiocordyceps	160	0.449	19.53	
sinensis	320	0.418	25.09	
Test Sample	Conc. in µg/mL	OD @ 590nm	% Inhibition	IC ₅₀ in µM
Test Sample Vehicle Control		OD @ 590nm 0.551	% Inhibition	IC ₅₀ in μM

	20	0.523	6.32	
CBUS3 (Mycelia)	40	0.488	12.59	185.6
Ophiocordyceps	80	0.395	29.28	
sinensis	160	0.286	48.69	
	320	0.212	61.95	

4.15.2 LDH Assay:

LDH assays of sample CBUAP1, CBUS3 (fruiting), and CBUS3 (mycelia) showed increased levels of LDH at higher concentrations, i.e., 1891.54 U/L, 1554.91 U/L, and 1944.97 U/L at 320 µg/ml respectively, when compared to control (untreated), which was 390.06 U/L in MCF 7 cells. At 100µM treatment, standard doxorubicin released 2324.35 U/L of LDH in MCF 7 cells. Comparing Sample CBUAP1, CBUS3 (fruiting), and CBUS3 (mycelia) to Control (untreated), which had 368.69 U/L in HeLa cells, the three samples had greater amounts of LDH (1656.43 U/L, 1496.13 U/L, and 1854.14 U/L at 320µg/ml respectively). At 100 µM treatment, standard doxorubicin released 2527.40 U/L of LDH in HeLa cells. The LDH levels in CBUAP1, CBUS3 (fruiting), and CBUS3 (mycelia) were greater at higher doses (1683.15 U/L, 1474.76 U/L, and 1907.57 U/L at 320 µg/ml respectively) than in the control (untreated) group, which had 384.72 U/L in SKOV3 cells. At 100µM treatment, standard doxorubicin released 2703.73 U/L of LDH in SKOV3 cells.

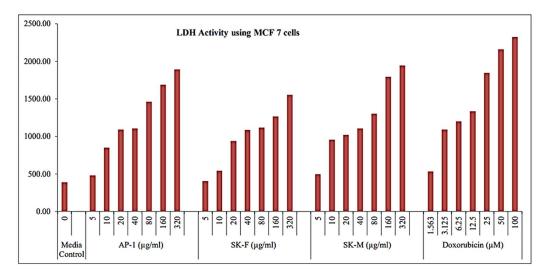


Fig: 4.32. LDH Assay of CBUAP1, CBUS3- Fruiting, CBUS3- Mycelia and standard Doxorubicin on MCF-7 cell line

adle 4.14. Results	<u> </u>	MCF-			
Sample	Concentration		rbance 0 nm	Absorbance	LDH activity (U/L)
		1 min	3 min		
Media Control	0	0.853	0.926	0.073	390.06
	1.563	0.862	0.962	0.100	534.33
	3.125	0.897	1.101	0.204	1090.04
	6.25	0.912	1.137	0.225	1202.25
Doxorubicin	12.5	0.926	1.176	0.250	1335.83
(µM)	25	0.942	1.288	0.346	1848.79
	50	0.978	1.382	0.404	2158.71
	100	0.994	1.429	0.435	2324.35
	5	0.832	0.922	0.090	480.90
	10	0.896	1.055	0.159	849.59
	20	0.902	1.106	0.204	1090.04
CBUAP1	40	0.914	1.121	0.207	1106.07
(Ophiocordyceps liangshanensis)	80	0.923	1.197	0.274	1464.07
(µg/mL)	160	0.930	1.246	0.316	1688.49
	320	0.941	1.295	0.354	1891.54
	5	0.884	0.960	0.076	406.09
	10	0.884	0.968	0.102	545.02
	20	0.896	1.072	0.176	940.43
	40	0.925	1.128	0.203	1084.70

Table 4.14. Results of LDH Assay on MC-7 Cell line

		-	1		
CBUS3	80	0.937	1.146	0.209	1116.76
(Fruiting)	160	0.942	1.179	0.237	1266.37
Ophiocordyceps	100	0.942	1.179	0.237	1200.37
sinensis	320	0.954	1.245	0.291	1554.91
(μg/mL)					
	5	0.844	0.937	0.093	496.93
CBUS3 (Mycelia)	10	0.884	1.063	0.179	956.46
Ophiocordyceps	20	0.910	1.101	0.191	1020.58
<i>sinensis</i> (μg/mL)	40	0.921	1.128	0.207	1106.07
	80	0.938	1.182	0.244	1303.77
	160	0.962	1.298	0.336	1795.36
	320	0.987	1.351	0.364	1944.97

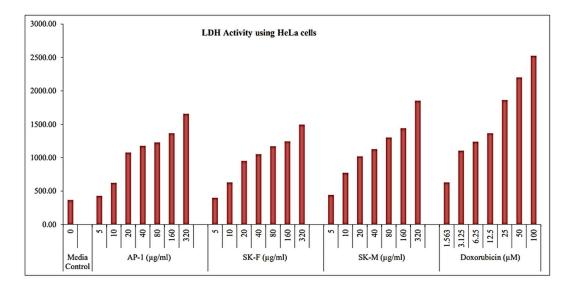


Fig: 4.33. LDH Assay of CBUAP1, CBUS3- Fruiting, CBUS3- Mycelia and standard Doxorubicin on HeLa cell line

Table 4.15. Results of LDH Assay on HeLa Cell line HeLa

Sample	Concentration		rbance 0 nm	Absorbance	LDH activity (U/L)	
		1 min 3 min				
Media Control	0	0.868	0.937	0.069	368.69	
	1.563	0.875	0.993	0.118	630.51	
	3.125	0.905	1.112	0.207	1106.07	
	6.25	0.919	1.151	0.232	1239.65	
Doxorubicin(µM)	12.5	0.931	1.187	0.256	1367.89	
	25	0.945	1.294	0.349	1864.82	
	50	0.971	1.383	0.412	2201.45	
	100	0.998	1.471	0.473	2527.40	
	5	0.868	0.948	0.080	427.47	
	10	0.886	1.003	0.117	625.17	
	20	0.905	1.107	0.202	1079.35	
CBUAP1	40	0.919	1.139	0.220	1175.53	
(Ophiocordyceps liangshanensis)	80	0.925	1.115	0.230	1228.97	
(µg/mL)	160	0.937	1.193	0.256	1367.89	
	320	0.943	1.253	0.310	1656.43	
	5	0.962	0.029	0.075	400 75	
		0.863	0.938	0.075	400.75	
	10	0.876	0.994	0.118	630.51	
	20	0.891	1.069	0.178	951.11	
	40	0.918	1.115	0.197	1052.64	

CBUS3	80	0.927	1.146	0.219	1170.19
(Fruiting)- Ophiocordyceps	160	0.935	1.168	0.233	1245.00
sinensis (µg/mL)	320	0.941	1.221	0.280	1496.13
	5	0.844	0.927	0.083	433.50
CBUS3 (Mycelia)-	10	0.852	0.997	0.145	774.78
Ophiocordyceps	20	0.910	1.101	0.191	1020.58
sinensis	40	0.921	1.132	0.211	1127.44
(μg/mL)	80	0.938	1.182	0.244	1303.77
	160	0.942	1.212	0.270	1442.70
	320	0.945	1.292	0.347	1854.14

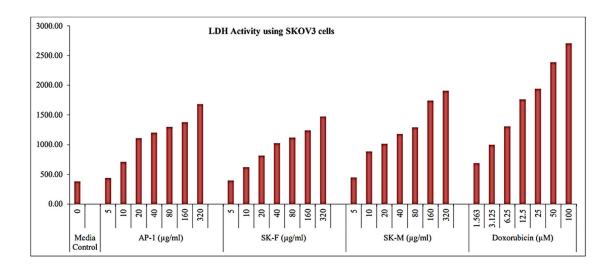


Fig: 4.34. LDH Assay of CBUAP1, CBUS3- Fruiting, CBUS3- Mycelia and standard Doxorubicin on SKOV3 cell line

able 4.10. Results		SKOV3				
Sample	Concentration		rbance 0 nm	Absorbance	LDH activity (U/L)	
		1 min 3 min				
Media Control	0	0.862	0.934	0.072	384.72	
	1.563	0.865	0.994	0.129	689.29	
	3.125	0.915	1.102	0.187	999.20	
	6.25	0.927	1.172	0.245	1309.12	
Doxorubicin(µM)	12.5	0.943	1.273	0.330	1763.30	
	25	0.965	1.328	0.363	1939.63	
	50	0.976	1.423	0.447	2388.47	
	100	0.987	1.493	0.506	2703.73	
	5	0.872	0.945	0.082	438.15	
	10	0.909	1.042	0.133	710.66	
	20	0.917	1.125	0.208	1111.41	
CBUAP1	40	0.926	1.151	0.225	1202.25	
(Ophiocordyceps liangshanensis)	80	0.931	1.174	0.243	1298.43	
(µg/mL)	160	0.946	1.204	0.258	1378.58	
	320	0.955	1.270	0.315	1683.15	
	5	0.858	0.932	0.074	395.41	
	10	0.866	0.982	0.116	619.83	
	20	0.873	1.026	0.153	817.53	
	40	0.912	1.104	0.192	1025.92	

Table 4.16. Results of LDH Assay on SKOV3 cell line

CBUS3 (Fruiting)-	80	0.925	1.135	0.210	1122.10
Ophiocordyceps	160	0.930	1.162	0.232	1239.65
sinensis (µg/mL)	320	0.935	1.211	0.276	1474.76
	5	0.784	0.868	0.084	448.84
	10	0.832	0.998	0.166	886.99
CBUS3 (Mycelia)-	20	0.905	1.095	0.190	1015.23
Ophiocordyceps	40	0.917	1.138	0.211	1180.88
sinensis (µg/mL)	80	0.925	1.167	0.242	1293.09
	160	0.939	1.265	0.326	1741.93
	320	0.954	1.311	0.357	1907.57

4.16 HPLC Analysis:

High Performance Liquid Chromatography was used for the quantification of adenosine and cordycepin because of its boasted medicinal attributes. The results demonstrated that the wild collected samples (CBUS3, CBUAP1, CBUB1 and CBUB2), CBUS3 had the highest adenosine content of 119 μ g/ mg of extract and lowest concentration of adenosine was recorded from CBUAP1 of 30 μ g/ mg. The bioactive compound Cordycepin was found only from CBUAP1 at a concentration of 10 μ g/ mg among the wild collected samples. Similarly, among the standard *Cordyceps militaris* samples, *Cordyceps militaris* grown on barni rice had the highest concentration of adenosine content of 260 μ g/mg extract, followed by *Cordyceps militaris* grown on brown rice 250 μ g/mg extract and the lowest concentration of adenosine was found to be on *Cordyceps militaris* grown on basmati rice 145 μ g/mg. The concentration of cordycepin was found to be highest in *Cordyceps militaris* grown on brown rice of 300 μ g/ mg, followed by *Cordyceps militaris* grown on basmati rice 295 μ g/mg and the lowest concentration of cordycepin was recorded from *Cordyceps militaris* grown on black rice 100 μ g/mg of extract.

Table: 4.17. HPLC analysis

Sl. No.	Sample	Peak Name	RT	Area	Area %	Height	Amount
1	CBUS3	Adenosine	10.249	1233921	9.91	41328	119 µg/ mg
		Cordycepin	13.422				ND
2	CBUAP1	Adenosine	15.377	88245	1.22	2868	30 µg/ mg
		Cordycepin	18.418	28916	0.40	1119	10 µg/ mg
3	CBUB1	Adenosine	11.058	543572	3.62	16263	91µg/ mg
		Cordycepin	15.400				ND
4	CBUB2	Adenosine	10.866	1070119	10.23	37666	105 µg/ mg
		Cordycepin	15.400				ND
5	CBUCM	Adenosine	11.132	1419840	6.33	77990	250µg/ mg
	(Cordyceps militaris)- Brown	Cordycepin	15.469	3094275	13.80	96719	300µg/ mg
	Rice						
6	CBUCM (Cordyceps	Adenosine	11.487	816254	4.32	43371	145 µg/mg
	<i>militaris</i>)- Basmati Rice	Cordycepin	15.967	3090564	16.37	101362	295 µg/mg
7	CBUCM	Adenosine	11.249	969488	5.42	54327	170 µg/ mg
	(Cordyceps militaris)-	Cordycepin	15 72 (1050010	10.4	50077	100 /
	Joha Rice		15.736	1858818	10.4	59277	180 µg/mg
8	CBUCM (Cordyceps	Adenosine	11.01	1471508	6.34	82799	260 µg/mg
	<i>militaris</i>)- Barni Rice	Cordycepin	15.308	1935084	8.34	63377	185 µg/mg
9	CBUCM (Cordyceps	Adenosine	11.214	1047256	6.43	56292	185 µg/mg
	<i>militaris</i>)- Black Rice	Cordycepin	15.901	1036739	6.37	34305	100 µg/mg

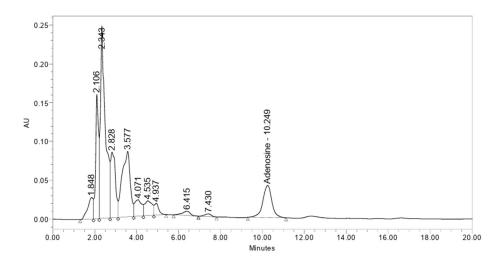


Fig 4.35. HPLC Chromatogram of CBUS3 (Fruiting)

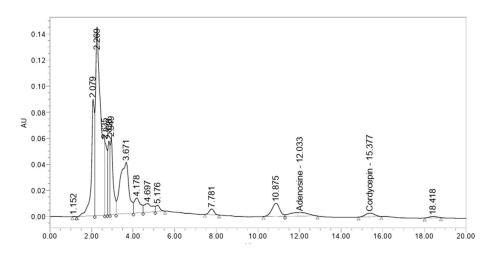
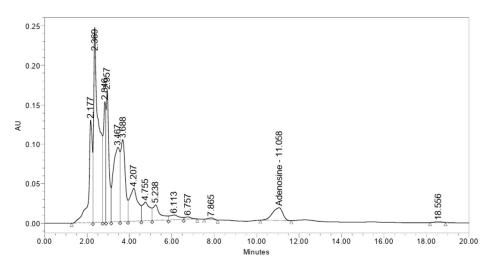
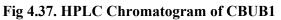




Fig 4.36. HPLC Chromatogram of CBAP1

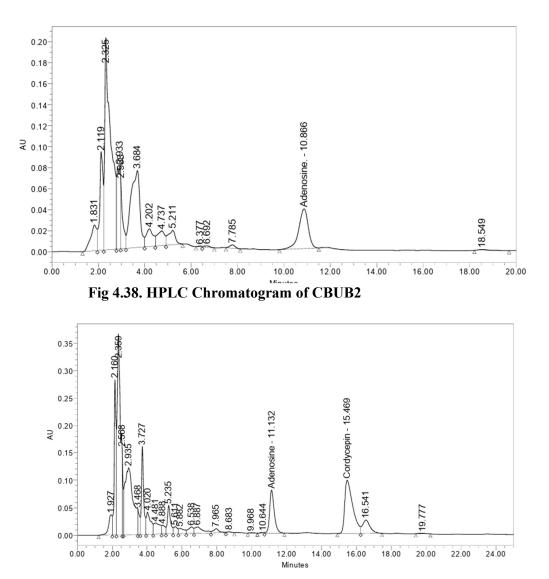


Fig 4.39. HPLC Chromatogram of CBUCM (*Cordyceps militaris*) grown on Brown Rice

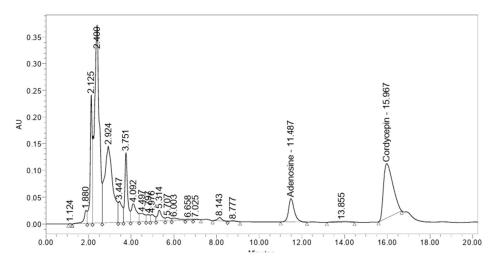


Fig 4.40. HPLC Chromatogram of CBUCM (*Cordyceps militaris*) grown on Basmati Rice

46 | Page

Fig 4.41. HPLC Chromatogram of CBUCM (*Cordyceps militaris*) grown on Joha Rice

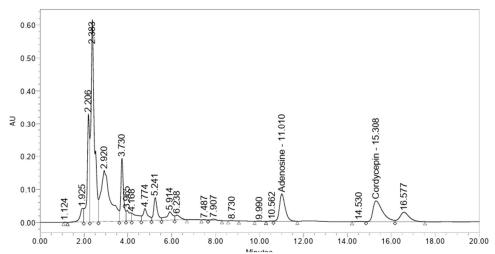


Fig 4.42. HPLC Chromatogram of CBUCM (*Cordyceps militaris*) grown on Barni Rice

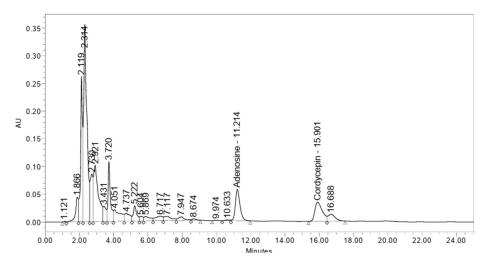


Fig 4.43. HPLC Chromatogram of CBUCM (*Cordyceps militaris*) grown on Black Rice

47 | Page

4.17 GCMS Analysis:

The samples were analysed using GCMS, which allowed for the identification of several bioactive chemicals based on their peaks observed on a chromatogram. The peaks were subsequently compared to the peaks of recognised chemicals recorded in NIST libraries. The fragmentation of molecules was compared based on their mass-to-charge ratio (m/z), and the compounds were identified. The bioactive chemicals found exhibited diverse actions and characteristics, including antibacterial, antioxidant, and antiviral effects. The chemicals that have been identified are given in Table (4.18-4.21). The majority of the chemicals exhibit similarity across the whole sample that was studied.

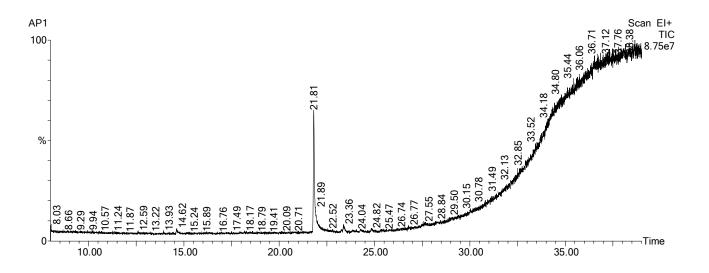
Sl.	Retention	Compound Name	Composition	Molecular	Molecular	Structure	Activity
No.	Time (Min)		(%)	Weight	Formula		
				(g/mol)			
1	14.616	SUCCINIC ACID, 1,1,1-	0.505	282.26	$C_{12}H_{17}F_{3}O_{4}$		Antibacterial
		TRIFLUOROPROP-2-YL					activity
		3-METHYLBUT-3-EN-1-				3 to have	(Huang et al.,
		YL ESTER				*)	2022)

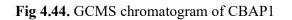
Table 4.18. Bioactive compounds identified from CBUAP1

2	21.814	CLOFEXAMIDE	9.453	284.78	C ₁₄ H ₂₁ C ₁ N ₂ O ₂		Antidepressant (Tareq et al., 2023)
3	23.365	Z,Z-7,11- HEXADECADIEN-1-OL	0.374	238.41	C ₁₆ H ₃₀ O	"o~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Pheromone used as Insect attractants- mating disrupter (Vick et al., 1974)
4	24.840	3-OCTANOL, 3,7- DIMETHYL	0.237	200.32	C ₁₂ H ₂₄ O ₂	L-Log	Cytotoxic activity (anticancer), andioxidant activity (Coêlho et al., 2022)

Sl. No.	Retention Time (Min)	Compound Name	Composition (%)	Molecular Weight (g/mol)	Molecular Formula	Structure	Activity
1	14.591	SUCCINIC ACID, 1,1,1- TRIFLUOROPROP-2-YL 3-METHYLBUT-3-EN-1- YL ESTER	0.493	282.26	C ₁₂ H ₁₇ F ₃ O ₄	.'	Antibacterial activity (Huang et al., 2022)
2	21.789	CLOFEXAMIDE	10.790	284.78	C ₁₄ H ₂₁ C ₁ N ₂ O ₂		Antidepressant (Tareq et al., 2023)
3	23.375	[1,4]DIOXINO[2,3-B]- 1,4-DIOXIN, HEXAHYDRO-2,2,3,3- TETRAMETHYL	0.438	202.25	C ₁₀ H ₁₈ O ₄	\neq	phytotoxic, cytotoxic, or antimicrobial activity (Sebald et al., 2019)

Table 4.19. Bioactive compounds identified from CBUB1


Sl.	Retention	Compound Name	Compositio	Molecular	Molecular	Structure	Activity
No.	Time		n (%)	Weight	Formula		
	(Min)			(g/mol)			
1	21.804	CLOFEXAMIDE	10.790	284.78	$C_{14}H_{21}C_lN$	L.	Antidepressant
					$_2O_2$	×	(Tareq et al., 2023)
						an H company	
						7	
						\sim	
2	25.315	Flecainide	0.271	414.34	$C_{17}H_{20}F_6N$		Antiarrhythmic activity, used
					₂ O ₃		for treatment of irregular
						X.	heart beat (Arunachalam &
							Alzahrani, 2019.)
						X	
3	25.330	PIPERIDINE, 2-(2,2-	0.271	277.5	C ₁₉ H ₃₅ N	~	anticancer, antiviral,
		DICYCLOHEXYLET					antimalarial, antimicrobial,
		HYL)-					antifungal, antihypertension,
							analgesic, anti-inflammatory,
							anti-Alzheimer, antipsychotic
							and/or anticoagulant agents.
							(Abdelshaheed et al., 2017)


Table 4.20. Bioactive compounds identified from CBUS3 (fruiting)

Sl. No.	Rete ntion Time (Min)	Compound Name	Composi tion (%)	Molecular Weight (g/mol)	Molecular Formula	Structure	Activity
1	21.6 99	CLENBUTEROL, 2TMS DERIVATIVE	NA	421.5	C ₁₈ H ₃₄ Cl ₂ N ₂ OSi 2	x4+	Used to treat asthma, muscle attropy (Jiang et al., 2011)
2	26.5 16	3-PENTANOL, 3- METHYL	NA	102.17	C ₆ H ₁₄ O		Antidepressant and anticonvulsant (Pharmaceutical Manufacturing Encyclopedia (Vol. 1) 2007)
3	29.7 82	3-OCTANOL, 3- METHYL	0.411	144.25	C9H20O	****	Flavouring agent in meat industry (Hsu et al., 1982)

Table 4.21. Bioactive compounds identified from CBUS3 (Mycelia)

4	34.1	1,3-DIOXOLANE,	3.786	350.34		XL	Antioxidant activity
	94	4-ETHYL-5-				TA .	(Khan et al., 2016)
		OCTYL-2,2-				5-	
		BIS(TRIFLUORO			$C_{15}H_{24}F_6O_2$	2	
		METHYL)-,				<	
		TRANS					
5	37.1	CYCLOBARBITA	7.326	236	$C_{12}H_{16}N_2O_3$		Antidepressant and used for
	75	L				\square	treatment of insomnia
							(Breyer-Pfaff, U., Jerg, H., &
							Petruch, F. 1979)

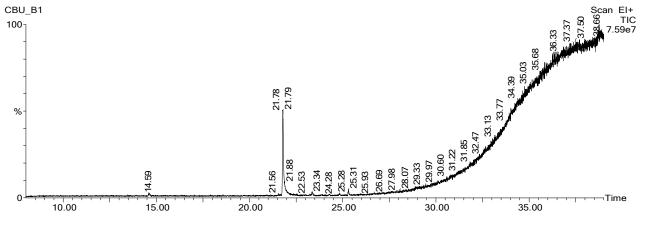
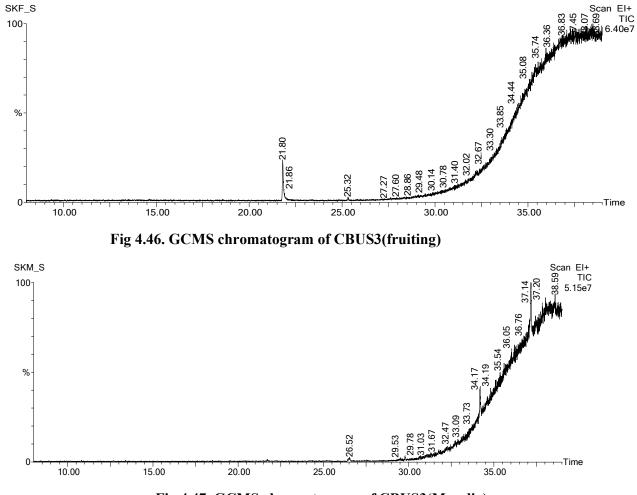



Fig 4.45. GCMS chromatogram of CBUB1

