Chapter 2

Five Dimensional Bianchi Type-I
Anisotropic Cloud String Cosmological
Model with Electromagnetic Field in
Scaez-Ballester Theory

2.1 Introduction

According to several forms of literature, our universe is expanding at an accelerated rate.
Bull et al. (Bull and et al., 2016) investigated alternative cosmology and summarised
the current status of AC DM as a physical theory in addition to the standard model
ACDM in extending cosmology. On a massive scale, FRW space-time can only explain
an isotropic and homogenous universe. Recent discoveries and reasoning, however,
demonstrate that an anisotropic phase exists throughout the universe’s cosmic expansion
before it shifts to an isotropic phase. Bianchi type cosmological models depict the
homogeneous and anisotropic worlds and their isotropy nature can be investigated across
time. Furthermore, from a theoretical sense, anisotropic worlds are more general than
isotropic model universes. Several studies (Akarsu and Kilinc, 2010; Amirhashchi et al.,

2009; Sahoo and Mishra, 2015; Singh et al., 2021) examined the anisotropic Bianchi
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type cosmological model from diverse perspectives. In his work "Topology of Cosmic
Domains and strings," Kibble (Kibble, 1976) characterised the stable topological faults
that occurred throughout the phase shift as strings. He also shown that the homogeneity
group of the manifold of degenerate vacua impacts domain structure topological defects.
Letelier (Letelier, 1983b) investigated string cosmology using the Bianchi type-I and
Kantowski-Sachs space-time cosmological models.

Several authors have recently concentrated on string cosmological models due to
the importance of string in characterising the early phases of our universe’s evolution.
At the same time, the string can describe the nature and essential configuration of the
early universe. String theory is the most actively researched approach to quantum
gravity and it can be used to analyse the mechanics of the early universe. String theory
integrates all matter and forces into a single theoretical structure and portrays our
universe’s early phases in terms of vibrating strings rather than particles. According to
Kibble (Kibble, 1976), cosmic strings are stable line-like topological objects/defects
that emerge at some point during our universe’s early history at the phase transition.
According to GUT (grand unified theories), symmetry is broken during the phase
transition in the early stages of the universe after the big bang (Everett, 1980; Kibble,
1976, 1980; Vilenkin, 1981a,c; Zel’dovich et al., 1974), and these strings appear when
the cosmic temperature drops below. Strings can so play an essential role in researching
the universe’s early stages. Massive closed loops of strings generate massive scale
structures such as galaxies and clusters of galaxies. The gravitational field interacts
with the cosmic strings, which may contain stress-energy. As a result, one of the most
fascinating projects is the study of gravitational forces caused by cosmic strings.

Letelier (Letelier, 1983b) was the first to obtain massive string cosmological models
in Bianchi type-I and Kantowski- Sachs space-times. Following Letelier, a number of
authors looked into string cosmological models in a variety of contexts.

Krori et al. (Krori et al., 1990) and Wang (Xing-Xiang, 2003) investigated the
Letelier string cosmology model and obtained accurate solutions utilising Bianchi
type-IL, -VIO, -VIII, and -IX space-times. Using the LRS Bianchi type-I metric and the
coefficient of bulk viscosity as a power function of energy density, Xing (Xing-Xiang,

2004) created an exact solution string cosmological model with bulk viscosity. Yavuz
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et al. (Yavuz et al., 2005) studied charged odd quark matter coupled to the string cloud
in spherical symmetric space-time and discovered a one-parameter group of conformal
motions. Yilmaz (Yilmaz, 2006) established the Kaluza-Klein cosmological solutions
for quark matter coupled to the string cloud in the context of general relativity. Rao (Rao
et al., 2008b) developed an accurate perfect fluid cosmological model based on the Lyra
manifold with a constant displacement vector while studying a Bianchi type-V space-
time in a scalar-tensor theory. However, if 3 is a function of cosmic time ¢, then this
model only applies to radiation. Tripathy (Tripathy et al., 2009) studied an anisotropic
and spatially homogeneous Bianchi type-VIO space-time and produced cloud string
cosmological models in Sadez-Ballester scalar-tensor theory. Adhav et al. (Adhav et al.,
2007b) created string cosmological models in the Brans-Dicke theory of gravitation by
solving the field equations with the condition that the sum of tension density and energy
density is zero. Pawar (Pawar et al., 2018) studied the Kaluza-Klein string cosmological
model in the setting of the f(R, T) theory of gravity, solving the field equations utilising
a power law link between scale factor and a time-varying deceleration parameter.

The cosmological model is crucial in the evolution of the universe and the formation
of large scale structures such as galaxies and other celestial bodies in the presence of
an electromagnetic field. The current period of accelerated expansion of the universe
is caused by the presence of a cosmic electromagnetic field produced during inflation.
Jimenez and Maroto (Jimenez and Maroto, 2009) demonstrated on cosmological scales
that the presence of an electromagnetic field provides an effective cosmological constant
that accounts for the universe’s accelerated expansion. Tripathy et al. (Tripathi et al.,
2017) studied an inhomogeneous string cosmological model with electromagnetic
field in general relativity. Parikh (Parikh et al., 2018) recently examined a Bianchi
type-II string dust cosmology model with an electromagnetic field in Lyra’s Geometry.
Grasso and Rubinstein (Grasso and Rubinstein, 2000) investigated a wide range of
magnetic field properties in the early universe, as well as modern temporal fields and
their evolution in galaxies and clusters. The magnetic field also helps to break down
statistical homogeneity and isotropy. Large scale galaxies and galaxy clusters contain
magnetic fields. Subramanian (Subramanian, 2016) proved in his work that primordial

magnetic fields have a substantial impact on the formation of star formations, especially
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on dwarf galaxy scales.

2.2 'The metric and field equations

We consider the spatially homogenous and anisotropic Bianchi type-I metric as given

below

ds? = —dt* + A*(da? + dy?) + B2dz* + C*dy? 2.1)

where A, B and C are functions of cosmic time ¢.
Sdez-Ballester provides the Einstein field equations for the combined scalar and

tensor fields as given below

1 1
R;; — §Rgij —we™(¢id,; — §gij¢,k¢7k) = -1 (2.2)

also the scalar field fulfils the equation

207 ¢ +me™ dpd* =0 (2.3)

We make the following assumptions for the metric (2.1).
=, 2=y, ¥ =2 2" =1, and2® =t

The energy-momentum tensor of a cloud string (Reddy, 2003) has the form

T'z’j = puiuj — )\$ﬂ§j + Ez‘j (24)

where p,, denotes particle density, A is string tension density and p is the rest energy
density of the cloud of strings with particles connected to them by p = p, + A. z;is a
unit space-like vector that denotes string direction, with 22 = 0 = 23 = 2% = z° and

x! # 0 and u; is the five velocity vector that satisfies the following conditions

wu, = —x'e; = —1 (2.5)

and

ulz; =0 (2.6)
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The five velocity vectors u’ and the direction of the string z*, are given by

u' = (0,0,0,0,1) .7)
and

"—(10000) (2.8)

r = A: 9 Yy MYy .

where the direction of the strings is parallel to the x-axis.
The electromagnetic field E;;, which is a component of the energy momentum
tensor, is given as
1

1
Eij = E(gaﬁﬂaﬂﬁ - Zlgz‘jFaﬁFa’g) (2.9)

F,s denotes the electromagnetic field tensor. If the magnetic field is quantized
along the x-axis, Fi5 is the only non-vanishing component of the electromagnetic
field tensor F;;. Assuming infinite electromagnetic conductivity, it can be defined that
Fio = Fi3 = Fiy = Fys = Fyy = Fy; = F34 = F35 = 0. (Singh et al., 2020).

As a result, the nontrivial components of the electromagnetic field £;; can be

determined using equation (2.9), as define below

1 1
Ei=-Ey=-Ej=-E =E = —591195515’125 = @Fﬁ% (2.10)

Alternatively, if we take the magnetic field along the x-axis in co-moving coordinates,
F3,4 1s the only non-vanishing component of the electromagnetic field tensor F;;. Assum-
ing infinite electromagnetic conductivity, F5 = Fby = F35 = Fio = Fi13 = Fiy = 0.
(Singh et al., 2020).

As a result, the nontrivial components of the electromagnetic field E;; can be

determined using equation (2.9).

1
2A2

The physical quantities for the metric (2.1), the spatial volume V, the average scale

El=-F)=_-FE}=_Ei=El = FZ, (2.11)

factor a, the expansion scalar 8, the Hubble’s parameter H, the deceleration parameter

g, the shear scalar 02 and the mean anisotropy parameter /\ are given as follows
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V =a*= A’BC (2.12)

— 2.13
5 C ( )
1. A B C
H=0=1%27570 @1
ad d 1
N en | 2.1
=== =) (2.15)
1 .. 1 A2 B2 (2 @2
2 — —_g..0Y — Z_(9__ I ) -
7=y =t m e T 10
1<~ H —H
_ = i 2
A= ;:l:( = ) 2.17)

Here an over head dot indicates the first derivative of cosmic time ¢, whereas a
double over head dot represents the second. Also, H;(i = 1,2,3,4) represents the
directional Hubble’s Parameters in the x, y, z and v axis, which are determined for
metric (2.1) as H; = Hy = %, H; = g, and H, = %

When combined with equation (2.4) for the line element equation (2.1), the Saez-

Ballester field equation (2.2), (2.3) are reduced to the following set of equations

2% + % + g + 2%9 = ﬁﬂ% + wgbmg (2.20)
2§+%+§+2§§ _ iﬂ%ntwqu% (221)
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. . A B O mér
¢+¢(2—+—+—)+53—

175t e 0 (2.23)

2.3 Solution of the field equation

Equations (2.18-2.22) are a set of five equations with seven unknown parameters (A,
B, C, p, A\, ¢ and F}y5). In order to achieve explicit system solutions, two additional
constraints linking these parameters are required. These two relationships are considered
as

(I) We use the fact that the shear scalar o is proportional to the expansion scalar 6

(Collins et al., 1983; Kiran et al., 2015).

B=C" (2.24)

where 7 is a constant.

(IT) Berman (Berman, 1983b) and Ram et al. (Ram et al., 2010) established a
relationship between the Hubble’s parameter H and the average scale factor R. Berman
(Berman, 1983b), Berman and Gomide (Berman and de Mello Gomide, 1988), and Ram
et al. (Ram et al., 2010) solved FRW models using this type of connection, whereas
Ram et al. (Ram et al., 2010) solved Bianchi Type-V cosmological models in Lyra’s

Geometry, which is defined as

H = aa™™ (2.25)

here a; > 0, k; > 0 are constants.

Equation (2.25) provides us

a=(akit + k)5 if kA0 (2.26)

and

a = kze™t if k=0 (2.27)

where k5 and k3 are constants.
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Equation (2.15) gives the deceleration parameter g as given below

g=(k 1)  if  ki#0 (2.28)

q=-—1 if k=20 (2.29)
Case I: When £; # 0, we have

Equations (2.19), (2.20), (2.24) and (2.26) will provide us

k1—4
ka(agkyt+ky) M

C = kse a1(k1-9) (2.30)

In this equation, k; and k5 are constants. We can make the assumption that k, =

ks = 1 without losing generality

k1—4
(agkyt+ky) "1

C=¢ @19 (2.31)

Equations (2.12), (2.24) and (2.26) will give us

k1—4
2 _(agkyt+ky) F1 (n41)
A= ((lelt + kg) k1e 2a1 (k1 —4) (232)
and
k-4
n(ajkit+ksg) k1
B=c¢ ai(k1—4) (2.33)

Hence, the line element equation (2.1) becomes

ky—4
4 _ (agkyt+ky) k1 (nt1)
ds® = —dt* + (aykyt + ky)*e a1 (k=4 (dz® + dy?)+
k1—4 k1—4
2n(aqkyt+hy) F1 2(aqkit+ky) F1

e w0 d22 e atki-n gy? (2.34)

Equation (2.34) is a Bianchi Type-I cosmological model universe with electromag-

netic field and special law of Hubble’s parameter that becomes singular for k; = 4.
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2.4 Some physical properties of the model

We can now calculate the values of energy density p, string tension density A and
electromagnetic field tensor Fi5 for the model universe provided by equation (2.34)

using Equations (2.18)-(2.22).

P = —4a§(k‘1 — 4)(a1k1t + kg)_2 (235)

1 =
A= 5(3n2 +2n + 3) (a1 kit + ko) o 2a%(3k1 — 8)(arkit + ko) 72

k1+

—day(n+ D(arkt + k)" — wk2(arkit + ko) R (2.36)

k1—2

1 _ a4 _o(k1=2
F15 = \/5[1(3TL2 + 2n + 3)(&1/€1t + kg) kfll — 4&%([61 — 3)(a1k1t + kig) A k1 )

ky—4
2 (a1kyttky) 1 (n+1)

— 2@1(” + 1)(a1k1t + k’g)_l — w%(alklt + kg)_%]%€ a1 (k1—4) (237)

Using the relationship p = p, + A we get

1 _8
Pp = Zafkl(alklt + k’g)_2 - 5(371,2 + 2n + 3)(a1k1t + k’g) ksl +

_(M
k1

4&1(71 + 1)(Cllklt + kQ) ) + Wkg(aqk’lt + kﬁg)_% (238)

The physical parameters viz. proper volume V, Hubble’s parameter H, expansion
scalar 6, scalar field ¢, shear scalar 0% and the mean anisotropy parameter /\ are

determined as follows:
4
V =a* = (a1kit + ko) " (2.39)

aq
H= — "~ 2.40
((llklt + kg) ( )

4&1

0= —— —
(alk‘lt + kz)

(2.41)



42

B k‘()(m + 2) 2 (%) 2
Qb = 2a1<k’1 — 4>] +2 [(alklt + k’g) 1 (m I 2)] (242)
3n*+2n+3 s (ki
0'2 = ( n 4n )(a1k1t+k2) ksl —Qal(n+1)(a1k1t+k2) ( }61 )+2a%(a1k1t+k2)_2
(2.43)
(n+1) (1=ty (3n® +2n + 3) a(k1=1)
A=1-— (alklt + kg) k7 4 202 (alklt + k2> k1 (244)

Equations (2.41) and (2.43) gives

lim — 0 (2.45)

The variation of some of the parameters is graphically represented using the values

a1:k1:k6:n:1andk220.

Particle Density
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2.5 Physical interpratation

As stated in equation (2.28), the deceleration parameter ¢ is constant and negative.

Therefore the model obtained in this chapter has been inflating and expanding at a

consistent rate as cosmic time ¢ = 0. The pace of expansion of the universe remains

constant throughout the evolution. For k; < 1, ¢ = constant (negative value). Further-

more, the particle density is extremely positive at ¢ = 0 during the big bang. As time

passes, it approaches a positive value, finally attaining a finite constant value as t — oo
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(shown in figure 2.1). This shows that the particle continues to dominate the universe
over time and that the total number of particles in the universe remains constant. The
expansion scalar and the Hubble’s parameter, displays comparable variations throughout
time. Both the Hubble’s parameter H and the expansion scalar decreases with cosmic
time ¢ after developing from infinity at ¢ = 0 to a finite value as ¢ — oo (shown in figures
2.2,2.3). The expansion of the universe appears to be accelerating and the deceleration
parameter is negative in this scenario, ¢ > 0. The model defined in this chapter fulfils
the energy conditions p > 0 and p, > 0. The electromagnetic field modifies the model’s
behaviour as well as the physical parameter expressions. The rest energy density and
string tension density decreases in the presence of an electromagnetic field (shown
in figures 2.5, 2.6). String tension density and particle density are also comparable,
however string tension density vanishes faster than particle density. This demonstrates
that the model defined in this chapter displays a matter-dominated universe at late
time scales, which matches current observational data. Equation (2.39) shows that the
appropriate volume V = kfl at t = 0 increases with cosmic time ¢ (shown in Figure
2.7). This indicates that at ¢ = 0, the universe has a finite volume and subsequently
expands as cosmic time passes. As time ¢ — oo, the corresponding volume V becomes
infinite. The non-vanishing electromagnetic field tensor 75 rises exponentially as a
function of cosmic time 7, as shown by equation (2.37). (shown in figure 2.4). We can
see that the electromagnetic field tensor F75 does not vanishes when a; # 0. It has a
significant impact on the production of strings early in the universe’s evolution. The
string and the electromagnetic field coexist in this scenario.

The parameters shear scalar 02 and mean anisotropy parameter A diverges at the
initial singularity (shown in figures 2.8, 2.9). The model portrays a shearing, non-
rotating universe with the possibility of a big crunch at ¢ = 0. From the equation (2.45),
we obtained that the isotropic condition lim;_, g—; # 0, remains constant throughout
the universe’s evolution (from early to late time), indicating that the model does not

achieve isotropy (Sahoo et al., 2017).



