LICHEN DIVERSITY OF ULTAPANI FOREST RANGE, MANAS BIOSPHERE RESERVE, ASSAM AND BIOLOGICAL ACTIVITY OF SELECTED SPECIES

A THESIS SUBMITTED TO THE DEPARTMENT OF BOTANY, BODOLAND UNIVERSITY

FOR THE AWARD OF DEGREE OF DOCTOR OF PHILOSOPHY IN BOTANY

UNDER FACULTY OF SCIENCE AND TECHNOLOGY

SUBMITTED BY PUNGBILI ISLARY

ENROLLMENT NO.: BOTPHD-02 PH.D. REGISTRATION NO.: FINAL.BOT00235 of 2019-2020 MAY, 2024

BODOLAND UNIVERSITY DEPARTMENT OF BOTANY Debargaon, P.O.: Rangalikhata Kokrajhar-783370, BTR, Assam, India

Dr. Rebecca Daimari Assistant Professor

Contact: 9859164753 Email: rebeccadmr@gmail.com Dated: May, 2024

CERTIFICATE

I am pleased to forward this Ph.D. thesis entitled "LICHEN DIVERSITY OF ULTAPANI FOREST RANGE, MANAS BIOSPHERE RESERVE, ASSAM AND BIOLOGICAL ACTIVITY OF SELECTED SPECIES" by Ms. Pungbili Islary, submitted for the award of the Degree of Doctor of Philosophy (Ph.D.) in Botany in the Faculty of Science and Technology.

Ms. Pungbili Islary has carried out this work under my supervision and fulfils all the requirements under the Ph.D. Regulations of Bodoland University. She has been registered under Bodoland University with Provisional Registration No. PROV.BOT00235 of 2019-2020 and Ph.D. Final Registration No. FINAL.BOT00235 of 2019-2020.

I further declare that the thesis is entirely original and her own investigation and no part of the thesis have been submitted to any other university or anywhere for the award of any degree.

ī

mare 27/05/2024

Signature Dr. Rebecca Daimari Assistant Professor Dept. of Botany Bodoland University Kokrajhar-783370, Assam

DECLARATION

I, Pungbili Islary, declare that the thesis entitled "LICHEN DIVERSITY OF ULTAPANI FOREST RANGE, MANAS BIOSPHERE RESERVE, ASSAM AND BIOLOGICAL ACTIVITY OF SELECTED SPECIES" is a bonafide Ph.D. work done by me under the supervision of Dr. Rebecca Daimari, Assistant Professor, Department of Botany, Bodoland University. This thesis is submitted to Bodoland University for the award of degree, Doctor of Philosophy (Ph.D.) at Bodoland University bearing Enrollment no. BOTPHD-02 and final Registration no. FINAL.BOT00235 of 2019-2020. The thesis is the result of my own investigation and is original, and has not been previously submitted for the award of any degree or other research works.

Rungsili Islam

(Pungbili Islary) Department of Botany Bodoland University

Place: Kokrajhar Dated: May, 2024

ACKNOWLEDGEMENT

This study on "Lichen diversity of Ultapani Forest Range, Manas Biosphere Reserve, Assam and Biological Activity of Selected Species" was undertaken for the award of degree, Doctor of Philosophy (Ph.D.) in Botany under the Faculty of Science. The findings of the present study are the outcome of my extensive effort for my Ph.D. programme conducted during the period of 2019-2023. This work would not have been possible without the supportive advice, motivation, suggestions, and assistance of several individuals in other ways.

First and foremost, I want to express my deep sense of gratitude to my supervisor, Dr. Rebecca Daimari, Department of Botany, Bodoland University, Kokrajhar, Assam, for her unwavering guidance, support, kindness, and supervision. I express my sincere gratitude to her for her patience, insightful suggestions, encouragement, and company for whom I conducted my research.

I must express my sincere gratitude to the Member Secretary, Assam State Biodiversity Board (ASBB) and the official team for allowing me to explore the study area. I extend my appreciation to the Divisional Forest Officer (DFO), Haltugaon Forest Division of the Forest Department, Bodoland Territorial Region, for providing necessary information and granting me permission to conduct in study area.

I express my whole hearted thanks to Dr. Manjil Basumatary, Academic Registrar; Dr. Prahlad Basumatary, Deputy Academic Registrar; Prof. Hilloljyoti Singha, former Head of the Department, Zoology; Prof. Sandeep Das, former Dean, Faculty of Science and Teachnology; Prof. Sujit Deka, Dean, Faculty of Science and Teachnology; Prof. Sanjay Basumatary, Head of the Department, Chemistry; Dr. Hemen Sarma, Head of the Department, Botany; Dr. Sanjib Baruah, Assistant Professor, Botany; Dr. Yutika Narzary, Assistant Professor, Botany; Dr. Arvind Kumar Goyal, Assistant Professor, Biotechnology; Dr. Rajeeb Brahma, Assistant Professor, Physics; Dr. Kaylan Dey, Assistant Professor, Physics of Bodoland University, for suggesting numerous ideas and remarks during my entire progress seminar that helped me strengthen my Ph.D. work.

I want to express my hearthfelt gratitude to Mr. Durga Brahma, Mr. Keshab Brahma, Mr. Bana Kr. Brahma, Mr. Giren Brahma, staffs of Ultapani Forest Range and NGO and Mr. Jaisar Basumatary and his brother (inhabitants of Ultapani) for their kind assistance during field visit.

I express my sincere gratitude and profuse thanks to Dr. Dalip Kumar Upreti, Emeritus Scientist, CSIR-NBRI Lucknow; Dr, Sanjeeva Nayaka, Principal Scientist, CSIR-NBRI Lucknow; Dr. Gaurav Kumar Mishra, Scientist, CSIR-NBRI Lucknow; Dr. Komal Kumar Ingle, Technical Assistant, CSIR-NBRI Lucknow and Dr. Siljo Joseph, Scientist, Kerala Forest Research Institute for their monumental guidance on identification of lichen taxa. They encouraged me with immense source of inspiration, valuable guidance, constructive criticism, and always exhorted me in keeping myself intact with my studies in high spirit, which really gave impetus to my research work.

It is my privilege to express my heartfelt gratefulness and sincere thanks to Dr. Debasmita Dubey, Assistant Professor, Medical Research Laboratory, IMS and SUM hospital, Bhubaneshwar, India for assisting in my antimicrobial work.

I am really appreciative to Dr. Rajesh Kumar Meher, Postdoctoral fellow, ACTREC, Tata Memorial Center, Mumbai, India for helping me in my cytotoxic work.

I am highly obliged to Dr. Ananta Swargiary, Assistant Professor, Department of Zoology and Dr. Anjalu Basumatary, Assistant Professor, Department of Physics, Bodoland University for their help to use Spectrophotometer for my antioxidant work.

I owe the Ministry of Tribal affairs (MoTA), Government of India for the financial assistance under National Fellowship and Scholarship for Higher Studies of ST (Scheduled Tribe) students (NFST) (Award No: 202021-NFST-ASS-01574) for the Ph.D. programme.

Lastly, I feel extremely proud to express my deep favors, amazing gratitude beyond accountability to my father, Mr. Balaram Islary and mother, Mrs. Chaimuni Islary for their eternal love, rock-solid support and incessant sacrifices to figure my career and personality as I can never ever think of achieving this innovative and difficult task without the affection, adoration and blessings bequeathed by them. I also offer my thanks to my younger brother, Mr. Birfungsat Islary and sister, Ms. Bhagabati Islary for their love and care which has been my greatest strength always with me in this tough journey.

Furthermore, I would like to express my profound gratitude to all of my Scholar mates for their helpful cooperation in upholding the excellent spirit of the research environment.

I apologise profusely to everyone whose name could not be mentioned specifically on this page.

I bowed down to the All-Mighty God, whose favours made it possible for me to finish my research work.

Rungsili Islang

Pungbili Islary

List of Figures

Fig. 3.1.	Map showing the location of Ultapani Forest Range (UFR)	15
Fig. 4.1.	Representation of different growth forms of lichen taxa	32
Fig. 4.2.	Family wise representation of the lichen taxa	33
Fig. 4.3.	Representation of the lichen genera	34
Fig. 4.4.	Lichen diversity of UFR	187
Fig. 4.5.	Number of endemic species found in different states of India	215
Fig. 5.1.	GC-MS chromatograph of the methanol extract of A. ornatoides	
	volatile compounds with putative chemical structures of	227
	most abundant molecule	
Fig. 5.2.	A - Standard graph of Gallic acid curve	
	B - Total phenolic contents (mg GAE/g DW) of different	229
	extracts	
Fig. 5.3.	A - Standard graph of Quercetin curve	
	B - Total flavonoid contents (mg QE/g DW) of different	229
	extracts	
F: 7.4	A - Standard graph of Ascorbic acid	
Fig. 5.4.	B - Total antioxidant compounds by phosphomolybdenum	230
	method (mg AAE/g DW) of different extracts	
D ' 5 5	A - Standard graph of Ascorbic acid	
Fig. 5.5.	B - Ferric reducing antioxidant power (mg AAE/g DW) of	230
	different extracts	
Fig. 5.6.	A - Standard graph of Ascorbic acid	221
	B - IC50, scavenging DPPH radical between extracts	231
Fig. 5.7.	A - Standard graph of Trolox	
	B - IC50, ABTS assay between extracts	233
Fig. 5.8.	A - Standard graph of Ascorbic acid	
	B - IC50, Inhibitory activity towards lipid peroxidation between	234
	extracts	

Fig. 6.1.	Inhibition of proliferation of cancer cells against all the extracts	239
Fig. 6.2.	IC50, Cancer cell lines of methanol extract	240
Fig. 6.3.	A - Treatment of OVCAR-3 cancer cells with methanolic	
	extract of A. ornatoides at a specific IC50 concentration	240
	B - Viability and apoptotic percentage of the OVCAR-3 cancer	240
	cell	
Fig. 6.4.	A comprehensive visual representation of the impact of	
	methanolic extract on OVCAR-3 cancer cells at the IC50	241
	concentration	
Fig. 6.5.	Demonstrating the extract influences viability and apoptotic cell	242
	death of healthy cells across a range of concentrations	2 4 2

List of Photo plates

Plate 1	A - Ultapani river (flows in reverse direction)	16
	B - Photograph inside Ultapani forest	16
Plate 2	A - Naa Bhandhar (Mach Bhandhar)	17
	B - Saralbhanga river	
Plate 3	A - Laopani river	18
	B - Semi-evergreen forest	
Plate 4	A - Photograph from outside forest	19
	B - Golden langur on tree	
Plate 5	A - Remains of the tree felling within forest	223
	B - Human settlement after deforestration	
Plate 6	A - Clearance of the forest	224
	B - Remains of the burn down trees	224
Plate 7–18	Disc diffusion assay against bacteria	278-289
Plate 19–21	Disc diffusion assay against yeast	290-292
Plate 22–33	Agar-well diffusion assay against bacteria	293-304
Plate 34–36	Agar-well diffusion assay against yeast	305-307
Plate 37–38	MIC	308-309
Plate 39	MBC and MFC	310
Plate 40–50	Lichen species	311-321
Plate 51–53	TLC plate developed lichen substances	322-324

List of tables

Table 4.1.	Growth forms, families, genera and lichen taxa from UFR	32
Table 4.2.	List of lichen taxa, their growth forms and families along	25 42
	with their frequency and relative abundance of UFR	35-42
Table 4.3.	New distributional records of lichen to India discovered in	188-190
	UFR	
Table 4.4.	New distributional records of lichen to Assam discovered in	100 100
	UFR	190-198
Table 4.5.	New distributional records of lichen taxa to the BTR region	100 200
	discovered in UFR	198-209
Table 4.6.	Endemic species to India with substratum and their	209-213
	distribution discovered in UFR	
Table 4.7.	Comparison of lichen families of UFR with lichen biota of	215-217
	Assam	
Table 4.8.	List of lichen species used by ethnic groups and their	218
	usages discovered in UFR	210
Table 4.9.	Commercial lichen species used as spice in different states of	218
	India found in UFR	210
Table 4.10.	Encroached area, number of encroached villages, forest	
	cover reduction and number of increasing populations	220
	of UFR (Source: Haltugaon Forest Division, Kokrajhar)	
Table 5.1.	Temperature values for refluxing at Soxhlet, extraction yield	
	and colours of A. ornatoides dry extracts using different	225
	solvents	
Table 5.2.	Preliminary phytochemical screening of A. ornatoides with	225 226
	various solvents	225-226
Table 5.3.	Compounds detected and identified in the methanol extract	227-228
	by GC-MS	
Table 5.4.	Results of four assays among five different extracts by	231

Kruskal-Wallis test

Table 5.5.	Percentage scavenging rate of DPPH free radicals by extracts	232
Table 5.6A.	DPPH assay among the extracts in each concentration by	232
	Kruskal-Wallis test	232
Table 5.6B.	DPPH assay among the concentration in each extract by	232
	Kruskal-Wallis test	232
Table 5.7.	Percentage scavenging rate of ABTS radicals by extracts	233
Table 5.8A.	ABTS assay among the extracts in each concentration by	233-234
	Kruskal-Wallis test	255-254
Table 5.8B.	ABTS assay among the concentration in each extract by	234
	Kruskal-Wallis test	234
Table 5.9.	Percentage scavenging rate of lipid peroxidation radicals by	235
	extracts	255
Table 5.10A.	Lipid peroxidation assay among the extracts in each	235
	concentration by Kruskal-Wallis test	255
Table 5.10B.	Lipid peroxidation assay among the concentration in each	235
	extract by Kruskal-Wallis test	255
Table 7.1.	ZOI of bacterial strains and gentamicin against the lichen	245-246
	extracts (20 μ l of 15 mg/ml) by disc-diffusion assay	243-240
Table 7.2.	ZOI of bacterial strains and gentamicin against the lichen	246
	extracts (20 μ l of 20 mg/ml) by disc-diffusion assay	240
Table 7.3.	ZOI of bacterial strains and gentamicin against the lichen	246
	extracts (20 μ l of 25 mg/ml) by disc-diffusion assay	246
Table 7.4.	ZOI of C. albicans and fresocan against varied concentration	246 247
	of the lichen extracts (20 μ l) by disc-diffusion assay	246-247
Table 7.5.	ZOI of bacterial strains and gentamicin against the lichen	
	extracts (50 µl of 15 mg/ml) by agar-well diffusion	247
	assay	
Table 7.6.	ZOI of bacterial strains and gentamicin against the lichen	247 249
	extracts (50 µl of 20 mg/ml) by agar-well diffusion	247-248

х

assay

Table 7.7.	ZOI of bacterial strains and gentamicin against the lichen	
	extracts (50 µl of 25 mg/ml) by agar-well diffusion	248
	assay	
Table 7.8.	ZOI of C. albicans and fresocan against varied concentration	
	of the lichen extracts (30 μ l) by agar-well diffusion	248
	assay	
Table 7.9.	MIC and MBC values of lichen extracts against isolated	240 250
	MDR bacterial strains	249-250
Table 7.10.	MIC and MFC values of lichen extracts against isolated	250
	MDR yeast strain	230
Table 7.11.	MBC/MIC and MFC/MIC values of extracts against tested	250
	organisms	230

Abbreviation used

- ABTS = 2,2'-Azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)
- AO = Acridine Orange
- BUBH = Bodoland University Botanical Herbarium
- CFU = Colony forming unit
- Coll. = Collector
- CRF = Chirang Reserve Forest
- CSIR = Council of Scientific and Industrial Research
- Diam. = Diameter
- DMSO = Dimethyl sulphoxide
- DPPH = 1-diphenyl-2,2-picrylhydrazil
- DW = Dry weight
- Elev. = Elevation
- EtBr = Ethidium bromide
- FBS = Fetal Bovine Serum
- FRAP = Ferric-reducing antioxidant power assay
- G = Gram
- GA = Gyrophoric acid
- GAE = Gallic acid equivalent
- GAW = Glycerine-alcohol-water
- GE = Glycerine-acetic acid
- GPS = Global positioning system
- H = Hour
- IC50 = Concentration of sample providing 50% inhibition

M = Meter

- MBC = Minimum bactericidal concentration
- MDR = Multidrug resistance
- MFC = Minimum fungicidal concentration
- MHA = Muller-Hinton agar
- MIC = Minimum inhibitory concentration

- Min = Minutes
- Ml = Milliliter
- Mm = Millimeter
- NB = Nutrient broth
- NCCLS = National Committee for Clinical Laboratory Standards
- NIST = National Institute Standard and Technology
- PBS = Phosphate buffered saline
- Rf = Retention factor
- SDA = Sabourard dextrose agar
- SIRS = Systemic Inflammatory Response Syndrome
- TLC = Thin Layer Chromatography
- TTC = 2,3,5-triphenyl tetrazolium chloride
- UFR = Ultapani Forest Range
- UNESCO = The United Nations Educational, Scientific and Cultural Organization
- US = United State
- UV = Ultra violet
- WHO = World health organization
- YPD = Yeast Peptone Dextrose
- ZOI = Zone of inhibition
- $\mu l = Microlitre$
- $\mu m = Micrometer$