2022

(Held in 2023)

MCA .

(Theory Paper)

Paper Code: MCA 3'4

(Computer Based Optimization Technique)

Full Marks - 75

Pass Marks - 30

Time-Three hours

The figures in the margin indicate full marks for the questions.

- Answer any five questions:
 - 15×5=75
- 1. (a) Write two definitions of Operation Research.
 Write some applications of OR. 2+6=8
 - (b) Solve the following LPP by graphical method:

Maximize
$$Z = X_1 - 2X_2$$

Subject to
$$-X_1 + X_2 \le 1$$

 $6X_1 + 4X_2 \ge 24$
 $0 \le X_1 \le 5, \ 2 \le X_2 \le 4$

[Turn over

2. (a) Explain about Multiple optimal solutions, Unbounded solutions and Infeasible solutions.

6

(b) Solve the following LPP by Simplex method:

Maximize $Z = 2X_1 + X_2$

Subject to
$$X_1 + 2X_2 \le 10$$

 $X_1 + X_2 \le 6$
 $X_1 - X_2 \le 2$
 $X_1 - 2X_2 \le 1$
 $X_1 \ge 0, X_2 \ge 0$

- 3. (a) Define Slack, Surplus and Artificial variable.
 - (b) Solve the following LPP by Big-M method:

Minimize $Z = 2X_1 + 3X_2$

Subject to
$$X_1 + X_2 \ge 5$$

 $X_1 + 2X_2 \ge 6$
 $X_1 \ge 0, X_2 \ge 0$

51/63/2 (SEM-3) MCA 3.4 (2)

- 4. (a) Define non-degenerate basic feasible solution for transportation problem.
 - (b) Find the optimum solution to the following transportation problem in which the cells contain the transportation cost in rupees.

	A	B .	C	D	Ε	Available
W	7	6	4	5	9	40
X	8	5	6	7	8	30
· Y	6	8	9	6	5	20
. Z	5	7	7	8	6	10
Required	30	30	15	20	5	100 (Total)
•	L	ـــــا				12

5. Write the definitions of Assignment problem.
Solve the following Assignment problem:
3+12=15

	I	II	Ш	IV	V
1	11	17	8	16	20
2	9	7	12	6	15
3	13	16	15	12	16
4	21	24	17	28	26
5	14	10	12	11	13

51/63/2 (SEM-3) MCA 3·4

Turn over

$$Z = X_1 + X_2$$

Subject to
$$X_1 + X_2 + X_3 \le 7$$

$$X_1 \ge 5$$

$$X_2 \le 5$$

$$X_3 = 8$$

$$X_1 \ge 0$$
, $X_2 \ge 0$, $X_3 \ge 0$.

(b) Solve by Dual simplex method of the following LPP:

$$Z = -3X_1 - 2X_2$$

Subject to $X_1 + X_2 \ge 1$

$$X_1 + 2X_2 \le 7$$

$$X_1 + 2X_2 \ge 10$$

$$X_2 \le 3$$

$$X_1 \ge 0, X_2 \ge 0.$$

- 7. (a) Write the importance of Integer Programming Problem (IPP).
 - (b) Use cutting plan method to solve the following problem. 12

$$Z = X_1 + X_2$$

Subject to
$$3X_1 + 2X_2 \le 5$$

$$X_2 \leq 5$$

$$X_1, X_2 \ge 0$$

 X_1 , X_2 are integers.

- 7. (a) Explain the Bellman's Principle of Optimality.
 - (b) Find the shortest path from vertex A to B along arcs joining varivious vertices lying between A and B. Length of each path is given 13

- 8. A self-service store employee's one cashier at its counter. Nine customers arrive on an average every 5 minutes while the cashier can serve 10 customers in 5 minutes. Assuming Poission distribution for arrival rate and exponential distribution for service time, find
 - (a) average number of customers in the system.

3

- (b) average number of customers in the queue or average queue length.
- (c) average time a customer's spends in the system.
- (d) average time a customer waits before being served.