2021

(held in 2022)

MCA.

(Theory Paper).

Paper Code: MCA-3.4

(Computer Based Optimization Technique)

Full Marks - 75

Time - Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions

15×5=75

- 1. (a) Write two difinitions of Operation Research.
 Write some applications of OR. 2+5=7
 - (b) Solve the following LPP by graphical method:

Maximize
$$z = x_1 - 2x_2$$

Subject to $-x_1 + x_2 \le 1$
 $6x_1 + 4x_2 \ge 24$
 $0 \le x_1 \le 5, 2 \le x_2 \le 4$

[Turn over

2. (a) Explain about multiple optimal solutions, Unbounded solutions and Infeasible solution.

6

(b) Solve the following LPP by simplex method:

Maximize $z = 2x_1 + x_2$

۵

Subject to

$$x_1 + 2x_2 \le 10$$

$$x_1 + x_2 \le 6$$

$$\mathbf{x}_1 - \mathbf{x}_2 \le 2$$

$$x_1 - 2x_2 \le 1$$

$$x, x_2 \ge 0$$

3. (a) Define slack, surplus and artificial variable.

6

(b) Solve the following LPP by Big – M method:

Minimize $z = 2x_1 + 3x_2$

Subject to

$$x_1 + x_2 \ge 5$$

$$x_1 + 2x_2 \ge 6$$

Where $x_1, x_2 \ge 0$

4. (a) Define non-degenerate basic feasible solution for transportation problem.

52/63/2 (SEM-3) MCA 3.4 (2)

(b) Solve the following transportation problem where cell entries are unit costs. 12

O1 O2 O3 O4 05 Available

Α	68	35	4	74	15	18
В	57	88	91	3	8	17
C	91	60	75	45	60	19
D	52	53	24	7	82	13
E	51	18	82	13	. 7	13
Required	16	18	20	14	14	

5. Write the definitions of Assignment model. Solve the following Assignment problem: 3+12=15

CBritish Process									
	1	2	3	4	5	6			
Α	12	10	15	22	18	8			
В	10		25	15	16	12			
С	11	10	3	8	5	9			
. D	6	14	10	13	13	12			
Е	8	12	11	17	13	10			

6. (a) Construct the dual of the problem:

Maximize $z = x_1 + x_2$

Subject to

$$\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 \le 7$$

(3)

$$X_1 \ge 5$$

$$x \leq 5$$

$$x_3 = 8$$

Where $x_1 \ge 0$, $x_2 \ge 0$, $x_3 \ge 0$

(b) Solve by dual simplex method of the following LPP: 10

Minimize
$$z = 2x_1 + 2x_2 + 4x_3$$

Subject to

$$2x_{1} + 3x_{2} + 5x_{3} \ge 2$$

$$3x_{1} + x_{2} + 7x_{3} \le 3$$

$$x_{1} + 4x_{2} + 6x_{3} \le 5$$

$$x_{1} \ge 0, x_{2} \ge 0, x_{3} \ge 0$$

- (a) Write the importance of Integer Programming Problem (IPP). 3
 - (b) Use cutting plan method to solve the following problem: 12

$$Maximize z = x_1 + x_2$$

Subject to

$$3x_1 + 2x_2 \le 5$$
$$x_2 \le 5$$

(4)

$$x_1, x_2 \ge 0$$
 and are integrs.