63/2 (SEM-3) MCA 3.5 (O/N)

2021

(held in 2022)

MCA

(Theory Paper)

Paper Code: MCA-3.5 (Old/New)

(Formal Language And Automata Theory)

Full Marks - 75

Time - Three hours

The figures in the margin indicate full marks for the questions.

Instruction:

This paper contains three parts—PART—A, PART—B and PART—C. PART—A contains 10 questions, each question carries 1 mark. From PART—B out of 8 questions you are to answer only 5 questions each question carries 5 marks. In PART—C out of 6 questions you are to answer only 5 questions, each question carries 8 marks.

[Turn over

PART - A

1: Answer the following:

1×10=10

(a) Match the following:

List A	List B	
(i) Type 0	(a) Regular Grammar	
(ii) Type 1	(b) CFG	
(iii) Type 2	(c) Context-sensitive	
(iv) Type 3	(d) Turning Machine	

- (b) What is the Regular expression matching one or more specific characters?
 - (i) x

(ii) +

(iii) *

(iv) &

53/63/2 (SEM-3) MCA 3.5(O/N) (2)

(c) Which of the following string is not generated by the following grammar?

 $S \rightarrow SaSbS/ \in$

- (i) aabb
- (ii) abab
- (iii) aababb
- (iv) aaabbb
- (d) Regular expression (x + y) (x + y) denotes the set
 - $(i) \{xy, xy\}$
- (ii). {xx,xy, yx, yy}
- (iii) $\{x, y\}$
- (iv) $\{x, y, xy\}$
- (e) Given grammar $S \rightarrow (L) / a$, $L \rightarrow L$, S / S, which of the following input recognised by the grammar
 - (i) ((a, a),a)
- (ii) (a, a)
- (iii) (a, a, a), a)
- (iv) All of the above
- (f) The grammar $E \rightarrow E + E / E * E / a$ is
 - (i) Ambiguous
 - (ii) Unambiguous
 - (iii) Depends on the given sentence
 - (iv) None of the above
- 53/63/2 (SEM-3) MCA 3.5(O/N)
- [Turn over

- (g) The set {a, aa, aaaa, aaaaaa,} represent the regular expression.
 - (i) a*

(ii) (aa)*

(iii) aa*

- (iv) None of the above
- (h) A Moore machine accepts a string w of length n. The length of the output string is
 - (i) n+1
- (ii) n-1

(iii) n²

- (iv) n
- The output of a Mealy machine depends on
 - (i) the present state only
 - (ii) the present state and the input symbol
 - (iii) the input symbol only
 - (iv) None of the above
- The regular expression (P+Q)* is equal to

 - (i) $(P^* + Q)^*$ (ii) $(P^* + Q^*)$
 - (iii) P* Q*
- (iv) (P* Q*)*

(4)

53/63/2 (SEM-3) MCA 3.5(O/N)

PART - B

Answer any five of the following questions: $5 \times 5 = 25$

- Construct the following DFA.
 - (a) The set of string over {a, b, c} having abc as a substring.
 - (b) The set of string over {0, 1} ends in the substring 01.
- Construct the following Regular expression:
 - (a) The set of string over {a, b} containing exactly 2a's.
 - (b) The set of string over {0, 1} such that every string contains alternate O's and 1's.
- 3. Construct a finite automaton for the regular language (ab + c*) b.
- Define Mealy and Moore machine.
- Construct a regular grammar G generating the regular set represented by

$$P = a*b (a + b)*$$

- 6. If G is the grammar $S \rightarrow SbS/a$, show that G is ambiguous.
- 7. Discuss the model of PDA with ID.
- 8. Explain different parameters used in DFA and NDFA. Write differences in between them.

PART - C

Answer any five of the following questions:

Construct a minimum state automaton equivalent to the finite automata from the given transition

State/Σ	0	
$\rightarrow q_0$	q_{i}	1
$\mathbf{q}_{\mathbf{i}}$	\mathbf{q}_{4}	q_{2}
q_2	ł	q_3
	q ₄	q_3
9	$q_{\mathfrak{s}}$	$q_{_{\!6}}$
Q , q _s	q,	\mathbf{q}_{6}
q_s	$\mathbf{q_3}$	
\mathbf{q}_{6}	q_{ϵ}	$q_{_{6}}$
\mathbf{q}_{7}	$\mathbf{q}_{_{4}}$	q_{6}
	-4	q_{6}

Construct the finite automaton equivalent to the regular expression

$$(0+1)$$
* $(00+11)$ $(0+1)$ *

- Define Chomsky classification of languages with example.
- Define Chomsky normal form (CNF). Find a grammar in CNF equivalent to

$$S \rightarrow aAbB$$
, $A \rightarrow aA/a$, $B \rightarrow bB/b$.

- Design a PDA M to accept the language $L = \{ WCW^R / W \in (a, b)^+ \}$
- If a be the grammar

$$S \rightarrow aB/bA$$

$$S \rightarrow aS/bAA/a$$

$$B \rightarrow bS/aBB/b$$

For the string aaabbabbba, find Leftmost derivation and Rightmost derivation.

(7)

50