Total No. of printed pages = 5 63/2 (SEM-1) CHM 103

2021

(held in 2022)

CHEMISTRY

(Theory Paper)

Paper Code: CHM-103

(Inorganic Chemistry - I)

Full Marks-80

Time-Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions: $4\times5=20$
 - (a) Compare the bonding in O₂², O₂ and O₂.
 Discuss briefly Lewis structures, molecular orbital structures, bond lengths and bond strengths.
 - (b) Explain the geometry of CO₂ molecule with the help of MO theory.

[Turn over

- (c) Based on the MO theory of NH₃, find the average NH bond order in NH₃ by calculating the net number of bonds and dividing by the number of NH groups.
- (d) (i) Which hydrogen bond would you expect to be stronger, S-H...O or O-H...S?

 Why?
 - (ii) Describe the expected physical properties of water in the absence of Hydrogen bonding.
- (e) Explain the geometry of BeH₂ with the help of Walsh Diagram.
- 2. Answer any four of the following questions:

5×4=20

- (a) Based on the analysis of Mandelung constant alone, predict which polymorph in ZnS should be more stable. Assume that the Zn-S distances in the polymorps are identical. 2+3=5
- (b) Obtain the formula (MX_n or M_nX) for the following structures derived from the hole filling in close packed arrays with 5
- 28/63/2(SEM-1) CHM 103 (2)

- (i) Half the octahedral holes filled
- (ii) 1/4th of the tetrahedral holes filled
- (iii) 1/3th of the octahedral holes filled.
- (c) Explain polymorphism of a metals. Give suitable examples. 4+1=5
- (d) Distinguish between substitutional solid solution and interstitial solid solution. What are the criteria for the formation of a substitutional solid solutions?

 2+3=5
- (e) What is zintl phase? Draw the position of alloys and zintl phase in a Ketelaar triangle.

3. Answer any six of the following questions:

 $5 \times 6 = 30$

- (a) Write a note on structure, synthesis and applications of zeolite.
- (b) Discuss the structures of silicates. 5
- (c) What structures do you predict for the compound GeC₂B₉H₁₁ land SB₉H₁₂?
- 28/63/2(SEM-1) CHM 103

- (d) Complete the following reactions: $2\frac{1}{2} \times 2 = 5$
 - (i) $[C_2B_9H_{11}]^2 + Br Mn(CO)_s$
 - (ii) $C_2B_{10}H_{12} + MeO^- + 2 MeOH$
- (e) Write the energy level diagram for one B-H-B bridge in diborane.
- (f) Draw the shape of a molecular orbital for the formation of 3C-2e. B-B-B bond.
- (g) Draw the structure of dicarba-closo-dodecaborane. Give one method for synthesis of carborane.

 2½+½=5
- 4. Answer any one of the following questions:

 $5 \times 1 = 5$

- (a) What is super acid and how do you measure the acidity of such a solution?
- (b) State whether the formation of NH₃BF₃ is exothermic or endothermic.

F C Drago-Wayland parameter

BF₃ 20.2 3.31

NH₃ 2.78 7.08

28/63/2(SEM-1) CHM 103 (4)

100

- (c) Explain the relevance of acidity and basicity in catalysis.
- 5. Answer any one of the following questions:

5×1=5

- (a) Show how electrochemical potential is influenced by pH.
- (b) The standard potentials for the complex Fe²⁺/
 Fe and Fe³⁺/Fe²⁺ are -0.41V and +0.77V
 respectively. Should we expect Fe²⁺ to
 disproportionate in aqueous solution?

(5)