63/2 (SEM-2) CSIT 2.4

2022

COMPUTER SCIENCE AND TECHNOLOGY

(Theory Paper)

Paper Code: CSIT 2.4

(Mathematical Foundation of Computer Science)

Full Marks - 80

Time - Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions: $1 \times 5=5$
 - (a) Let $U = \{1, 2, \dots, 10\}, A = \{1, 2, 3\}$ and $B = \{4, 5\}$ then $A \oplus B$ is,
 - (i) {1, 2, 3, 4}
 - (ii) {2, 3, 4}
 - (iii) {1, 2, 3, 4, 5}
 - (iv) {1, 2, 3}

- (b) The binary relation $S = \phi$ (empty set) on set $A = \{ 1, 2, 3 \}$ is
 - (i) Neither reflexive nor symmetric
 - (ii) Symmetric and reflexive
 - (iii) Transitive and reflexive
 - (iv) Transitive and symmetric
- (c) Let R denote the set of real numbers. Let $f: R \times R \to R \times R$ be a bijective function defined by, f(x,y) = (x+y, x-y). The inverse function of f is given by,

(i)
$$f^{-1}(x,y) = \left(\frac{1}{x+y}, \frac{1}{x-y}\right)$$

(ii)
$$f^{-1}(x,y) = (x-y, x+y)$$

(iii)
$$f^{-1}(x,y) = \left(\frac{x+y}{2}, \frac{x-y}{2}\right)$$

(iv)
$$f^{1}(x,y) = (2(x-y),2(x+y))$$

- (d) $(P \rightarrow Q) \times (R \rightarrow Q)$ is equivalent to
 - (i) $(P \lor R) \rightarrow Q$ (ii) $P \lor (R \rightarrow P)$
 - (iii) $P \vee (R \rightarrow Q)$ (iv) $P \rightarrow (Q \rightarrow R)$
- 40/63/2 (SEM-2) CSIT 2.4 (2)

- (e) In any undirected graph, the sum of degrees of all the vertices
 - (i) must be even
 - (ii) is twice the number of edges
 - (iii) must be odd
 - (iv) Both (i) and (ii).
- 2. Answer the following questions: $2 \times 5 = 10$
 - (a) Given $A = \{1, 2, 3, 4\}$ and $B = \{x, y, z\}$. Let R be the following relation from A to B, $R = \{(1, y), (1, z), (3, y), (4, x), (4, z)\}$
 - (i) Find the inverse relation R⁻¹ of R
 - (ii) Determine the domain and range of R.
 - (b) Find $g_0 f$ and $f_0 g$, when $f : R \rightarrow R$ and $g : R \rightarrow R$ defined as, f(x) = 2x+3 and $g(x) = x^2+5$.
 - (c) Show that the order of any integral power of an element a cannot exceed the power of a.
 - (d) Let a, b, c be any elements in a Boolean algebra B. Then show that, a+a = a and a*a = a
 - (e) Construct the truth table for, $(A \lor B) \rightleftharpoons ((\neg A \land C) \rightarrow (B \land C)).$
- 40/63/2 (SEM-2) CSIT 2.4

3. Answer any seven of the following questions:

(a) Consider the set of ordered pair of natural numbers N×N defined by,

(a,b) R (c,d)
$$\Leftrightarrow$$
a+d = b+c.

Prove that, R is a equivalence relation.

- (b) If f:Q→Q such that f(x) = 2x and g:Q→Q such that g(x) = x+2, be two functions, then varify that,
 (g.f)⁻¹ = f⁻¹.g⁻¹, where Q is a set of rational
- (c) Prove that a group G is abelian if and only if, $(ab)^{-1} = a^{-1} b^{-1}$, $\forall a, b \in G$
- (d) Let 'a' be an element of a group G. Then show that the function f_a: G→G given by,
 f_a(x) = axa⁻¹, ∀x∈G is an automorphism of G.
- (e) Let a, b, c be any elements in a Boolean algebra B. Show that,
 (a*b)*c=a*(b*c)

(f) Check the validity of the following argument:

If Ram has completed B.E or MBA, then he is assured of a good job. If Ram is assured of a good job, he is happy. Ram is not happy. So Ram has not completed MBA.

(g) Find conjunctive normal form and disjunctive normal form for
 P⇒ (¬P∨¬Q)

(h) Show that
$$(S \lor R)$$
 is tautologically implied by $(P \lor O) (P \rightarrow R) \land (Q \rightarrow S)$.

- 4. Answer any *three* of the following questions: 10×3=30
 - (a) (i) Show that (with the help of logical identities)
 (P∨Q)∧¬(¬P∧(¬Q∨¬R)))
 ∨(¬P∧¬Q)∧(¬P∨¬R) is a tautology.
 - (ii) Then the validity of the following arguments:

All integers are irrational numbers. Some integers are powers of 2. Therefore, some irrational number is a power of 2.

numbers.

(b) Let a, b be any element in a Boolean algebraB. Show that,

(i)
$$(a+b)'=a'*b'$$
 and $(a*b)'=a'+b'$

- (ii) a + (a * b) = a and a * (a + b) = a
- (c) In a group G, if a^{-1} is the inverse of $a \in G$. Then show that $(a^{-1})^{-1} = a$. And also show that, $(ab)^{-1} = b^{-1}a^{-1}$, $\forall a, b \in G$.
- (d) Prove that the orders of the elements a and x⁻¹a x are the same where "a" and "x" are any two elements of a group G. Also find the solution of the equation,
 abxax = cbx, ∀ a, b, c∈G.
- (e) Let R be an equivalence relation defined on a set A. Let "a" and 'b' be arbitrary elements in A. Then show that,
 - (i) $[a] = [b] \Leftrightarrow (a,b) \in \mathbb{R}$.
 - (ii) Any two equivalence classes are either, identical or disjoint.

(6)

80