2022

MATHEMATICS

(Theory Paper)

Paper Code: MAT 201

(Complex Analysis)

Full Marks -80

Time - Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer any four from the following questions: $5\times4=20$
 - (a) Prove that $u = e^{-x} (x \sin y y \cos y)$ is harmonic. Find v such that f(z) = u + iv is analytic.
 - (b) Prove that if a function f(z) = u + iv is analytic in region R then u and v satisfies the Cauchy Riemann equations, provided that the partial derivatives u_x , u_y , v_x and v_y exist.

[Turn over

- (c) Show that the function $f(z) = \sqrt{|xy|}$ is not regular at the origin, although Cauchy-Riemann equations are satisfy at 0.
- (d) Show that an analytic function with constant modulus is constant.
- (e) Prove that if $u = x^2 y^2$, $v = -\frac{y}{(x^2 + y^2)}$ both u and v satisfy Laplace equations, but u + iv is not analytic function of z.
- 2. Answer any four from the following questions: 5×4=20
 - (a) State and prove maximum modulus theorem.
 - (b) State and prove argument theorem.
 - (c) Evaluate $\oint_C \frac{e^{2z}}{(z+1)^4} dz$, where C is the circle |z|=3.
 - (d) Show that if $f(z) = \frac{1}{1-z}$, then $f^{n}(z) = \frac{n!}{(1-z)^{n+1}}$.

- (e) Find the value of $\oint_C \frac{\sin^6 z}{\left(z \frac{\pi}{6}\right)^3} dz$ if C is the circle |z| = 1.
- 3. Answer any *four* from the following questions: $5\times4=20$
 - (a) State and prove Taylor's theorem.
 - (b) Expand $\frac{1}{(z+1)(z+3)}$ in a Laurent's series valid for 1 < |z| < 3.
 - (c) State and prove Cauchy residue theorem.
 - (d) Show that the function $f(z) = e^{z}$ has an isolated essential singularity at $z = \infty$.
 - (e) Evaluate $\oint \frac{2z^2+5}{(z+2)^3(z^2+4)z^2} dz$ where C is the circle |z-2i|=6.

(3)

- 4. Answer any four from the following questions:
 - (a) Prove that if a > 0 then

$$\int_{0}^{\infty} \frac{dx}{x^4 + a^4} = \frac{\pi}{2\sqrt{2} a^3}$$

(b) Prove that if a > 0, m > 0 then

$$\int_{0}^{\infty} \frac{\cos mx}{a^2 + x^2} dx = \frac{\pi}{2a} e^{-ma}$$

- (c) Find a bilinear transformation that maps points z_1 , z_2 , z_3 of the z-plane into the points w_1 , w_2 , w_3 of the w-plane respectively.
- (d) Define translation and rotation. Let R be the rectangular region in the z-plane bounded by x = 0, y = 0, x = 2, y = 1. Determine the region R' of the w-plane into which R is mapped under the transformation w = z + (1-2i).
- (e) Let w = f(z) be a transformation such that f(z) is analytic at z_0 and $f(z_0) \neq 0$. Prove that under this transformation, the tangent at z_0 at ant curve C in the z-plane passing through z_0 rotated through the angle $\alpha = \arg f'(z_0)$.