63/2 (SEM-1) MAT 105

2021

(held in 2022)

MATHEMATICS

(Theory Paper)

Paper Code: MAT-105

(Tensor Analysis)

Full Marks - 80

Time - Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer any four of the following: $5\times4=20$
 - (a) Establish the transformation law of contravariant tensor $A^{P} = \frac{\partial x^{P}}{\partial x^{\alpha}} A^{\alpha}$.
 - (b) Defining contraction in a tensor, show that every contraction reduces the rank of a tensor by two.

Turn over

- (c) If B^{α} is a contravariant tensor and $B^{\alpha}A_{\alpha}$ is invariant, prove that A_{α} is a covariant tensor of rank one.
- (d) Explain how to distinguish covariant and contravariant tensors of rank one.
- (e) Show that the number of independent components of a symmetric tensor A_{ij} is $\frac{1}{2}n(n+1), i, j=1, 2, \dots, n.$
- (f) Show that tensor law of transformation possesses the group property.
- 2. Answer any two of the following questions: 10×2=20
 - (a) Derive the transformation law of the Christoffel symbol of the first kind $\int_{ij,k}^{\infty} (or [ij,k]^{\prime}) as$

$$\int_{ij,k}^{\prime} = \int_{ab,c} \frac{\partial x^{a}}{\partial x^{\prime i}} \frac{\partial x^{b}}{\partial x^{\prime j}} \frac{\partial x^{c}}{\partial x^{\prime k}} + g_{ab} \frac{\partial^{2} x^{a}}{\partial x^{\prime i} \partial x^{\prime j}} \frac{\partial x^{b}}{\partial x^{\prime k}}$$

(b) Determine the covariant derivative of the second order covariant tensor namely A_{ij,k} with respect to x^k.
 Hence write down the result of A^{ij}_{qr,k}
 8+2=10

- (c) (i) Determine the non-vanishing Christoffel symbols $\int_{jk}^{i} \left(or \{_j^i k\} \right)$ of the second kind for the metric $ds^2 = a^2 (d\theta^2 + \sin^2 \theta \ d\phi^2)$, where a is a constant.
 - (ii) If A_{ij} is a curl of a covariant vector B_i prove that $A_{ij,k} + A_{jk,i} + A_{ki,j} = 0.$
- 3. Answer any *two* of the following questions: $10 \times 2 = 20$
 - (a) Write down the equations of geodesics in a Riemannian space V_n . Determine the differential equations of geodesics for

$$ds^{2} = f(x)dx^{2} + dy^{2} + dz^{2} + \frac{1}{f(x)}dt^{2}.$$

What is the geodesic in case of spherical surface in 3-dimensions? 9+1=10

(b) What do you mean by geodesic coordinates?
Hence establish the Bianchi identity

$$\cdot R_{ijk,l}^a + R_{ikl,j}^a + R_{ilj,k}^a = 0.$$

Write down another form of Bianchi identity.

(c) Derive the expression of the curvature tensor of the second kind as

$$R^{a}_{ijk} = \frac{\partial}{\partial x^{j}} \left(\left\lceil_{ijk} \right) - \frac{\partial}{\partial x^{k}} \left(\left\lceil_{ij}^{a} \right) + \left\lceil_{\alpha j}^{a} \right\rceil_{ik}^{\alpha} - \left\lceil_{\alpha k}^{a} \right\rceil_{ij}^{\alpha} \right) ;$$

 $\int_{ab,c} \left(or \begin{Bmatrix} \alpha \\ ij \end{Bmatrix} \right)$ is the Christoffel symbol of the second kind.

Why it is named as Curvature tensor? Explain. 8+2=10

- 4. Answer any *two* of the following questions: $10 \times 2 = 20$
 - (a) (i) Define intrinsic derivative of a vector.

 Show that a vector of constant magnitude is orthogonal to its intrinsic derivative.

 1+4=5
 - (ii) Show that a geodesic is an autoparallel curve.
 - (b) Prove that the differential equation $A_{i,j} = 0$ is integrable if $R_{ijk}^a = 0$.
 - (c) Derive the expression of tensor derivative of a tensor $A^{\alpha}_{\beta\gamma}$ with usual notation.