Total No. of printed pages = 4 63/2 (SEM-3) MAT 303

2021

(held in 2022)

MATHEMATICS

(Theory Paper)

Paper Code: MAT-303

(Number Theory)

Full Marks - 80

Time-Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer any four of the following questions: 5×4=20
 - (a) Explain and verify Euclid's Algorithm.
 - (b) "If a and b are two integers not both zero then there exists integers x and y such that $g \operatorname{Cd}(a,b) = ax + by$." Prove it.

- (c) State and prove fundamental theorem of Arithmetic.
- (d) Solve the system of linear congruence: $x \equiv 3 \pmod{5}; x \equiv 2 \pmod{3}; x \equiv 2 \pmod{7}.$
- (e) Find the general solution of 39x 56y = 11.
- (f) If a_n is the n^{th} term of the Fibonacci sequence and $\alpha = \frac{1+\sqrt{5}}{2}$ then show that $a_n > \alpha^{n-1}, \, \forall n > 1$.
- 2. Answer any four of the following questions: $5\times4=20$
 - (a) Every even perfect number is of the form $2^{k-1}(2^k-1)$; where (2^k-1) is prime.
 - (b) Every even perfect number $n = 2^{k-1} [2^k 1]$ is the sum of first $2^{(k-1)/2}$ odd cubes.
 - (c) State and prove Fermat's Little theorem.

- (d) If p and q are two distinct primes such that $a^p \equiv a \pmod{q}$ and $a^q \equiv a \pmod{p}$ then show that $a^{pq} \equiv a \pmod{pq}$. Also, verify it.
- (e) "Fermat numbers are relatively prime", establish it.
- (f) Prove that: if p>2 is a prime then any prime divisor of Mersene prime, Mp must be of the form 2kp+1.
- 3. Answer any four of the following questions: $5\times4=20$
 - (a) Define Mobius function. Show that it is multiplicative.
 - (b) If n has k distinct prime factors and its divisors are arranged in an accending order as $d_1 < d_2 < ... < d_m$ then show that: $|\mu(d_1)| + |\mu(d_2)| + ... + |\mu(d_m)| = 2^k.$
 - (c) Prove that : $\sum_{d|n} \phi(d) = n$.
 - (d) Explain complete residue system with example.
 - (e) Show that the set of integers {1,5,7,11} is a RRS (mod 12) · (RRS : Reduced Residue System)

(3)

- (f) Prove that $\sum_{d \mid n} (-1)^d \phi(d) = n 2m$, m is the largest odd integer.
- 4. Answer any four of the following questions: 5×4=20
 - (a) State and prove Euler's Criterion.
 - (b) Solve the congruence: $5x^2 6x + 2 \equiv 0 \pmod{13}$.
 - (c) State and prove Gauss Lemma.
 - (d) Show that the congruence, $x^2 \equiv 105 \pmod{199}$ has no solution.
 - (e) Show that Jacobi symbol, $\left(\frac{2}{P}\right) = (-1)^{(P^2-1)/8}$
 - (f) Prove that, there is exactly $\frac{P-1}{2}$ quadratic residue and $\frac{P-1}{2}$ quadratic non residue mod P.