63/2 (SEM-1) MAT 101

2021

(held in 2022)

MATHEMATICS

(Theory Paper)

Paper Code: MAT-101

(Algebra)

Full Marks - 80

Time - Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer any four from the following questions: $5\times4=20$
 - (a) Find the all cyclic subgroups of U (30). Give an example of non-cyclic group whose all subgroups are cyclic.

[Turn over

- (b) What is the maximum order of any element in A_{10} ? Let $\gamma = (1 \ 3 \ 5 \ 7 \ 9 \ 8 \ 6)$ (2 4 10) then what is the smallest positive integer n for which $\gamma^n = \gamma^{-5}$?
- (c) Define group homomorphism. How many homomorphisms are there from z_{20} onto z_{10} ? How many are there to z_{10} ?
- (d) Suppose $\varphi: \mathbb{Z}_{50} \to \mathbb{Z}_{15}$ is group homomorphism with $\varphi(7) = 6$. Then determine the following:
 - (i) $\varphi(x)$,

- (ii) Image of φ
- (iii) Ker φ and
 - (iv) $\varphi^{-1}(3)$.
- (e) Show that a group of order 72 must have a proper, nontrivial normal subgroup.
- (f) State and prove Sylow's second theorem.
- 2. Answer any four from the following questions: 5×4=20
 - (a) Let in a ring R with unity $(xy)^2 = x^2$, $\forall x$, $y \in R$, then show that R is commutative.
 - (b) Let R be a commutative ring with unity. If every ideal of R is prime, show that R is a field.

- (c) Let $f: R \rightarrow R^{l}$ be an onto homomorphism, then show that R^{l} is isomorphic to a quotient ring of R.
- (d) Prove that an ideal P of a commutative ring
 R is prime if and only if for two ideals A,
 B of R, AB⊆P implies either A⊆P or B⊆P.
- (e) Let R be commutative ring with unity. Show that an ideal M of R is maximal ideal of R iff R/M is field.
- 3. Answer any four from the following questions: $5\times4=20$
 - (a) Let R be a commutative ring with unity and g is a non-zero polynomial in R[x] of degree n with leading coefficient a unit in R. Show that for any $f \in R[x]$ there exist unique polynomials h and r in R[x] such that f = hg + r where either r = 0 or deg r<deg g.
 - (b) Let R be an integral domain with unity. If $l_1 = 1.c.m.(a,b)$ in R then l_2 is also an l.c.m. (a,b) if and only if l_1 and l_2 are associates.

(3)

- (c) Let R be an Euclidean domain and let A be an ideal of R then show that there exist $a_0 \in A$ such that $A = \{a_0x \mid x \in R\}$.
- (d) Let R be a Euclidean domain. For all $a,b \in R$, $a \ne 0$, $b \ne 0$, there exist t and r in R such that a = tb + r where either r = 0 or d(r) < d(b). Show that t and r are uniquely determined if and only if $d(a + b) \le Max\{d(a), d(b)\}$.
- (e) Prove that in a PID an element is prime if and only if it is irreducible.
- 4. Answer any four from the following questions: $5\times4=20$
 - (a) Let K be a finite extension of F and L, a finite extension of K. Then show that L is a finite extension of F and [L:F] = [L:K] [K:F].
 - (b) Let $\alpha \in K$ be algebraic over F. Then show that F(a) = F[a].
 - (c) If L is an algebraic extension of K and K, an algebraic extension of F, then show that L is an algebraic extension of F.

- (d) Show that any prime field is either isomorphism to the field of rational numbers or to the field of integers modulo some prime number.
- (e) If the rational number r is also an algebraic integer, prove that r must be an ordinary integer.

(5)