2022

MATHEMATICS

(Theory Paper)

Paper Code: MAT-203

(Functional Analysis)

Full Marks-80

Time-Three hours

The figures in the margin indicate full marks for the questions.

- 1. Choose the correct option of the following:

 1×6=6
 - (i) For infinite dimensional normed space X with the closed unit ball $M = \{x \in X : ||x|| \le 1\}$, then by Riesz's lemma we can construct a sequence (x_n) , which
 - (a) have convergent subsequence such that

$$x_n \in M, (m \neq n) ||x_m - x_n|| \ge \frac{1}{2}$$

- (b) have convergent subsequence such that $x_n \in M, (m \neq n) \|x_m x_n\| = \frac{1}{2}$
- (c) cannot have convergent subsequence such that $x_n \in M$, $(m \neq n) ||x_m x_n|| \ge \frac{1}{2}$
- (d) cannot have convergent subsequence such that $x_n \in M$, $(m \neq n) ||x_m x_n|| \le \frac{1}{2}$
- (ii) Let T:X → Y be a bounded linear transformation on normed spaces then which of the following is true?
 - (a) $||T|| = \sup\{||Tx|| : x \in X, ||x|| \le 1\}$
 - (b) $||T|| = \sup \left\{ \frac{||Tx||}{x} : x \in X, x \neq 0 \right\}$
 - (c) $||T|| = \inf \{K : K \ge 0, ||Tx|| \le K ||x||, \forall \in X \}$
 - (d) All of the above are true
- (iii) If 1 + 1 ≠ 0 in the field K, then the bilinear form f can be obtained from the quadratic form q by the following polar form

(a)
$$f(u,v) = \frac{1}{2}[q(u+v)-q(u)+q(v)]$$

80/63/2 (SEM-2) MAT 203

(2)

(b)
$$f(u,v) = \frac{1}{2}[q(u+v)-q(u)-q(v)]$$

(c)
$$f(u,v) = \frac{1}{2}[q(u+v)+q(u)-q(v)]$$

(d)
$$f(u,v) = \frac{1}{2}[q(u+v)+q(u)+q(v)]$$

(iv) In a Fourier series $x(t) = a_0 + \sum_k [a_k \cos kt + b_k \sin kt]$, where $u_k(t) = \cos kt$, $v_k(t) = \sin kt$ then the series can be written $x(t) = a_0 + \sum_k [a_k u_k(t) + b_k v_k(t)]$. Let (e_j) and (\hat{e}_j) be two orthonormal bases, then the inner product form of the series will be

(a)
$$x = \langle x, e_0 \rangle e_0 + \sum_{k=1}^{\infty} \left[\langle x, e_k \rangle e_k + \langle x, \widehat{e_k} \rangle \widehat{e_k} \right]$$

(b)
$$x = \langle x, e_0 \rangle e_0 + \sum_{k=1}^{\infty} \left[\langle x, e_k \rangle e_k - \langle x, \widehat{e_k} \rangle \widehat{e_k} \right]$$

(c)
$$x = \langle x, e_0 \rangle e_0 - \sum_{k=1}^{\infty} \left[\langle x, e_k \rangle e_k - \langle x, \widehat{e_k} \rangle \widehat{e_k} \right]$$

(d)
$$x = < x, e_0 > e_0 - \sum_{k=1}^{\infty} \left[< x, e_k > e_k + < x, \widehat{e_k} > \widehat{e_k} \right]$$

80/63/2(SEM-2) MAT 203

[Turn over

- (v) Let M# φ be the subset of normed space X and M̄ be its closure, then there exists an element x∈M̄ if and only if there exists a sequence (x_n)∈M such that
 - (a) x_n not converges to x
 - (b) (x_n) is closed
 - (c) (x_n) is compact
 - (d) x_n converges to x

(vi) Choose the correct statement:

- (a) A normed linear space is metric space under d(x,y) = ||x-y||.
- (b) An inner product space is a normed space under | x ||² = < x, x >
- (c) An inner product is a metric space under $d(x, y = ||x y|| = \sqrt{\langle x y, x y \rangle}$
- (d) All of the above.
- 2. Answer the following questions: $2 \times 5 = 10$
 - (a) Define bounded linear functional and describe in 1² space.

- (b) Let X be a normed space and let x₀(≠0) ∈ X.
 Then show that there exists a bounded linear functional f[^] on X such that
 |f[^]||=1, f[^](x₀) = ||x₀||.
- (c) If x is orthogonal to y then show that $||x+y||^2 = ||x||^2 + ||y||^2.$
- (d) Let H be a Hilbert space and $\{e_i\}$ be an orthonormal set in H. If $x = \sum \langle x, e_i \rangle e_i$ then show that $||x||^2 = |\langle x, e_i \rangle|^2$.
- (e) Find the symmetric matrix that corresponds to the following quadratic forms:

$$q(x, y, z) = 3x^2 + 4xy - y^2 + 8xz - 6yz + z^2$$
.

- 3. Answer any six of the following questions: $5\times6=30$
 - (a) State and prove Riesz's Lemma.
 - (b) Prove that- in a finite dimensional Normed space X, any subset M⊂X is compact if and only if M is closed and bounded.

(5)

- (c) Let (T_n) be a sequence of bounded linear operators $T_n: X \to Y$ from a Banach space X to a normed space Y such that $(||T_n x||)$ is bounded for every $x \in X$. Then show that the sequence of the norms $(||T_n||)$ is bounded.
- (d) Let f be a bounded linear functional on a subspace Z of a normed space X. Then show that there exists a bounded linear functional f^* on X which is a extension of f to X and has the same norm, $\|f^*\|_x = \|f\|_x$.
- (e) Let λ be an eigen value of a linear operator T on V. Then prove the following:
 - (i) If $T^* = T^{-1}$ then $|\lambda| = 1$.
 - (ii) If $T^* = T$ then λ is real.
 - (iii) If $T^* = -T$ then λ is imaginary.
 - (iv) If T = S*S with |S| # 0 then λ is real and positive.
- (f) Prove: "A subspace Y of a Hilbert space is closed if and only if $Y = Y^{\perp \perp}$."
- (g) Let (e_k) be an orthonormal sequence in an inner product space X. Then show that $\sum_{k=1}^{\infty} |\langle x, e_k \rangle|^2 \le ||x||^2$. (Bessel's Inequality)

- (h) If P is a projection on a Hilbert space H with range M and null space N then show that M⊥N if and only if P is self-adjoint.
- (i) Let T:X→Y be a linear mapping where X and Y be normed linear spaces. Then show that the following statements are equivalent to one another
 - (i) T is continuous at any point x_0 ,
 - (ii) T is bounded,
 - (iii) If $S = \{x : ||x|| \le 1\}$ is closed unit sphere in X then its image is a bounded set in Y.
- 4. Answer any *two* of the following questions: $10 \times 2=20$
 - (A) State Gram-Schmidt Orthogonalization Process, and apply to find an orthogonal basis and then an orthonormal basis for the subspace U of \mathbb{R}^4 spanned by 3+7=10

$$v_1 = (1,1,1,1); v_2 = (1,2,4,5); v_3 = (1,-3,-4,-2)$$

- (B) State and prove Riesz's Theroem in Hilbert space.
- 80/63/2(SEM-2) MAT 203 (7) [Turn over

(C) Prove that:

5+5=10

- (a) The space $l_p(p \neq 2)$ is not a Hilbert space.
- (b) The followings are equivalent
 - (i) $P = T^2$ for some self-adjoint operator T.
 - (ii) P = S*S for some operator S, i.e., P>0
 - (iii) P is self-adjoint and < Pu, $u > \ge 0$ for every $u \in V$.
- 5. Answer any one of the following questions:

14×1=14

(a) Prove that:

L_p, space is a normed space as well as complete under the norm

$$\begin{split} \|f\|_p = & \left[\int_x |f(x)|^p \ d\mu(x)\right]^{1/p} \text{ , where } p > 0 \text{ and } f \\ \text{be a continuous complex valued measurable} \\ & \text{function on } X \text{ with measure } \mu \text{ such that} \\ & \int_x |f(x)|^p \ d\mu(x) < \infty \,. \end{split}$$

(b) Let X be a real vector space and p be a sublinear functional on X. Furthermore, let f be a linear functional which is defined on a subspace z of X and satisfies f(x) ≤ p(x)∀x ∈ z. Then show that f has a linear extension f[^] from Z to X, satisfying f f[^](x) ≤ p(x), ∀x ∈ X.

(All the symbols have their usual meaning.)