63/2 (SEM-2) MAT 204

2022

MATHEMATICS

(Theory Paper)

Paper Code: MAT 204

(General Topology)

Full Marks - 80

Time - Three hours

The figures in the margin indicate full marks for the questions.

- 1. (a) Let B and B' be bases for the topologies T and T' respectively on X. Show that T' is finer than T if and only if for each $x \in X$ and $B \in B$ with $x \in B$, there is $B' \in B'$ such that $x \in B' \subseteq B$.
 - (b) Let (X,T) be a topological space and E be a non-empty subset of X. Show that the characteristic function of E on X is continuous if and only if E is both open and closed subset of X.

Let $f: \mathbb{R} \to \mathbb{R}$ be a function defined by

$$f(x) := \begin{cases} 2, & \text{if } x \ge 0 \\ -2, & \text{if } x \le 0 \end{cases}$$

Check whether

- (i) f is U U is continuous.
- (ii) f is T T is continuous.

Where U and T are respectively the usual and lower linit topology on \mathbb{R} . $2\frac{1}{2}+2\frac{1}{2}=5$

(c) Let X be an infinite set and $f: \mathbb{P}(X) \to \mathbb{P}(X)$ be a function defined by

$$f(A) := \begin{cases} A, & \text{if } A \text{ is finite.} \\ X, & \text{if } A \text{ is infinite.} \end{cases}$$

Show that f satisfies the Kuratowski closure axioms. Hence find the topology induced by f.

3+2=5

(d) Let f be a continuous open function from a topological space (X, T) onto another space (Y, T*). Show that T* is the quotient topology on Y relative to f.

(2)

Let f be a continuous closed function from a topological space (X, T) onto another space (Y, T*). Show that T* is the quotient topology on Y relative to f.

- 2. (a) Let (X, T) be a second countable space with X is uncountable set. Prove that every uncountable subset of X has a limit point. Does the result is true for separable space?
 4+1=5
 - (b) Show that a topological space is T₁ if and only if it contains the co-finite topology. 5

O

Let (X, T) be a T₁-space. Show that the derived set of a finite set in X is a null set.

- (c) Prove or disprove that in a T_{3½}- space any two distinct points can be separated by continuous functuion.
- (d) By applying Urysohn's lemma, show that every T₄-space is a Ty-chonoff space. 5

(3)

3. (a) Prove that a compact Hausdorff space is T₄space.

Or

Show that intersection of closed and compact subset of a space is compact. Does the result is ture for intersection of two compact subsets? 4+1=5

(b) Let (X, T) and (Y, T^*) be two topological space such that X is compact and Y is Hausdorff. Let $f: X \rightarrow Y$ be a continuous function. Show that $\overline{f(A)} = f(\overline{A})$ for every $A \subseteq X$.

Or

Show that every real valued continuous function from a compact space is a quotient function.

(c) Let (X, T) be a topological space and (\hat{X}, \hat{T}) be its Alexandroff compactification. Show that (\hat{X}, \hat{T}) is Hausdorff if and only if (X, T) is locally compact Hausdorff.

- (d) Let X be a compact Hausdorff space. Then for any $x \in X$, show that $Q(x) := \bigcap \{F \subseteq X \mid x \in F \text{ and } F \text{ is clopen}\}$ is connected. 5
- 4. (a) For a collection of topological spaces, write a short note on the "comparison of the box and product topologies".
 - (b) Let (Y, T^*) be a topological space and $\left(X = \prod_{\alpha} X_{\alpha} T\right)$ be a product space. Then show that a function $f: Y \to X$ is continuous if and only if for each projection $\pi_{\alpha}: X \to X_{\alpha}$, the composite mapping $\pi_{\alpha} \circ f: Y \to X_{\alpha}$ is continuous.
 - (c) Let $\{(X_{\alpha}, T_{\alpha}) \mid \alpha \in J\}$ be an arbitrary collection of normal spaces and T be the product topology on $X := \prod_{\alpha \in J} X_{\alpha}$.

Then for any be two disjoint closed subsets F_1 and F_2 of (X, T), can you construct a continuous function $f: X \rightarrow [0, 1]$ such that $f(F_1) = 1$ and $f(F_2) = 0$? Justify your answer.

(d) Let $\{(X_{\alpha}, T_{\alpha}) \mid \alpha \in J\}$ be an arbitrary collection of topological spaces and T be the product topology on $X := \prod_{\alpha \in J} X_{\alpha}$. Show that product space is compact if and only if each space is compact.

Or

Let
$$\left(X:=\prod_{\alpha\in J}X_{\alpha},T\right)$$
 be the product space of an indexed family of spaces $\{(X_{\alpha},T_{\alpha})\mid \alpha\in J\}$. Show that X is connected if and only if for each $\alpha\in J$, X_{α} has the corresponding property.

(Symbols are in their usual meaning.)