Total No. of printed pages = 5

63/2 (SEM-1) MAT 103

2021

(held in 2022)

MATHEMATICS

(Theory Paper)

Paper Code: MAT-103

(Mechanics)

Full Marks - 80

Time-Three hours

The figures in the margin indicate full marks for the questions.

1. Choose the correct option:

- 1×5=5
- (i) The path that gives the shortest distance between two points on a sphere is a
 - (a) Straight line
 - (b) Circle
 - (c) Great Circle
 - (d) Sphere

[Turn over

	(ii) The action integral must be a value for actual path.	4.	What is the Lagrangian of a free particle? Under
	(a) real (b) stationary		which condition total energy T+V is conserved?
	(c) maximum (d) minimum		2
•	(iii) Poisson's bracket is useful to find the	5.	What do you mean by configuration space?
,	(a) Equation of motion	•	2
	(b) Lagrange's function	6.	Define generating function. What is the value of
	(c) Hamilton's function		K.E. for a simple pendulum?
	(d) Integrals of motion	7.	Answer any five of the following: $5 \times 5 = 25$
	(iv) Which property holds good		(i) Discuss the Brachistochrone problem.
	(a) $\{q_i, -q_i\} = 1$ (b) $\{q_i, p_j\} = \delta_{qp}$		
	(c) $\{q_i, q_j\} = 1$ (d) $\{q_i, q_j\} = 0$		(ii) Deduce Euler-Lagrange equation from Hamilton's principle.
• •	(v) The δ-variation considered refers to variation		(iii) Discuss about the lagrangian of compound
	(a) quantity (b) time		pendulum.
•	(c) coordinate (d) integration.	•	•
2.	What do you mean by geodesics? How do you		(iv) Show that the transformation
	find the extremal of a function?		$Q = \int (2q) e^{\alpha} \cos p$
3.	State Hamilton's principle. What is the solid figure of revolution for which, for a given surface		$\mathbf{p} = J(2\mathbf{q}) \mathrm{e}^{-\alpha} \sin \mathbf{p}$
	area, has maximum volume?		is a canonical transformation.
83/	63/2(SEM-1) MAT 103 (2)		<u> </u>
		83	/63/2(SEM-1) MAT 103 (3) Turn over

(v) Establish the relation

$$\sum_{\ell=1}^{2n} \left\{ \mathbf{u}_{1}, \mathbf{u}_{i} \right\} \left[\mathbf{u}_{1}, \mathbf{u}_{j} \right] = \delta_{ij}$$

for set of 2n independent functions u_1 of coordinates $(q_1, q_2, ..., q_n)$ and $(p_1, p_2, ..., p_n)$.

- (vi) What do you mean by Poisson's bracket?

 Mention all the properties of Poisson's bracket.
- (vii) Derive the Hamilton-Jacobi equation.
- 8. Discuss about the Hamilton-Jacobi equation for Hamilton's characteristic function.
- 9. Explain about different types of constraints. 6
- 10. Prove that [aF+bG, w] = a[F, w]+b[G, w]. 8Discuss the conditions for a transformation to be canonical.
- 11. Answer any *two* of the following: $10 \times 2=20$
 - (i) Discuss briefly about generalized coordinates.

 Derive the Lagrange's equation of first kind.

- (ii) Deduce the equations of generalized velocity and generalized acceleration. Prove that the geodesics of a right circular cylinder is circular helix.
- (iii) Discuss about all the four forms of generating function.