2021

(held in 2022)

PHYSICS

(Theory Paper)

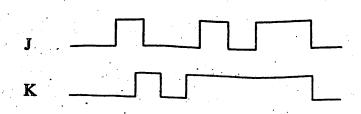
Paper Code: PHY-104 (Old & New)

(Electronics)

Full Marks - 80

Time - Three hours

The figures in the margin indicate full marks for the questions.


- 1. Answer the following questions: $1 \times 5 = 5$
 - (a) What are the three terminal of the P type MOSFET?
 - (b) The Propagation Constant $\gamma = \alpha + j\beta$. Name the constants α and β .
 - (c) Write down the expression relating phase angle and wavelength of a transmission line.
 - (d) What does reflections occur in a transmission line?

Turn over

- (e) A 100 MHz signal is passed over a wire of length 1 mm. Does this situation fulfills the criteria for transmission line?
- 2. Answer any five of the following: $2 \times 5 = 10$
 - (a) Differentiate between D-MOSFET and E-MOSFET. 2
 - (b) Draw the block diagram of a voltage controlled oscillator and also draw the output waveforms of the oscillator.
 - (c) What is frequency stability of an oscillator? Explain its significance.
 - (d) Draw the equivalent circuit diagram of a transmission line segment. 2
 - (e) Derive the Barkhausen criterion required for sinusoidal oscillation to be sustained with the help of block diagram of an oscillator.
 - (f) A 500 watt carrier wave is amplitude modulated to a depth of 60%. Find out the total in the wave.
 - (g) A phase shift oscillator is operating at $f_0 = 10$ KHz with $R = 200 \text{ k}\Omega$. Calculate the value of capacitance C of an R-C bridge circuit.

- 3. Answer any five of the following: 5×5=25
 - (a) Why noise appear in frequency modulation?
 What are the pre-emphasis and de-emphasis
 process and how it works in reducing the
 noise?

 5
 - (b) Realize the following logic operations using only NOR gates: 5
 - (i) AND (ii) OR (iii) NAND.
 - (c) Draw the circuit diagram of the JK masterslave flip-flop and its truth table. Use it to obtain the output for the following signal:

(3)

(d) Build a 4-bit binary ripple up-counter using T-type flip-flops and show its count-up sequence.

- (e) State the relation between standing wave ratio and reflection coefficient.
- (f) Discuss the termination of a transmission line in three different ways 5
 - (i) Short circuited
 - (ii) Open circuited and
 - (iii) Load impedance equal to characteristic impedance
- (g) Draw DTL circuit as NAND gate and explain its working.
- 4. Answer any four of the following: $10\times4=40$
 - (a) Derive the expression for a transmission line impedance and show that impedance varies point to point along the line. Show that input impedance on a line for repeats every half wavelength.

 4+4+2=10
 - (b) Discuss why impedance matching is required for a transmission line. Establish a relation between stub line length and transmission line length required for proper matching of impedance. Why short circuited stub is preferred over an open circuited stub?

3+6+1=10

- (c) Define modulation index, frequency spectrum and bandwidth of a frequency modulated wave. What are advantages of FM over AM?

 8+2=10
- (d) (i) Draw the circuit diagram of a firstorder high-pass Butterworth filter and explain its operation from the voltage gain of the filter.
 - (ii) Draw the circuit diagram of Wien oscillator and explain its operation. 5+5=10

(5)

(e) Design a mod-5 synchronous counter systematically using J-K flip flops. 10