Total No. of printed pages = 12 63/2 (SEM-3) PHY 303,304(N/O)

2021

(held in 2022)

PHYSICS

(Theory Paper)

Paper Code: PHY-303 (NEW)

(Advanced Nuclear Physics-I)

Full Marks - 80

Time - Two hours

The figures in the margin indicate full marks for the questions.

- 1. Choose the correct answer from the following:

 1×5=5
 - (a) When a photon interacts with matter, pair production occurs if the energy E (in MeV) of the photon is
 - (i) 0.1 < E (ii) 0.1 < E < 10
 - (iii) E > 10 (iv) None of the above

[Turn over

- (b) In a typical range number-distance curve, the mean range is the thickness of the matter at which the number of particle absorbed is roughly
 - (a) 10 %
- (b) 1%
- (c) 50%
- (d) 100%
- (c) Which of the following statement is correct?
 - (a) A is a baryon with positive charge.
 - (b) Intermediate vector bosons are composite in nature.
 - (c) e, μ and τ are known as mesons.
 - (d) Mesons and baryons are collectively known as hadrons.
- (d) The range of electromagnetic force is
 - (a) $\leq 10^{-14}$ cm
- (b) $\leq 10^{-13}$ cm
- (b) $\sim 10^{-5}$ cm
- (d) infinite
- (e) Choose the particle with strangeness quantum number, s = 3 from the following
 - (i) $\bar{\Omega}^+$
- (ii) Ξ⁻
- (iii) Ω^{-}
- (iv) Δ^+
- 95/63/2 (SEM-3) PHY 303,304(N/O) (2)

- 2. Answer any five of the following: $2 \times 5 = 10$
 - (a) Neutron is chargeless but it has a non-zero magnetic moment. Why?
 - (b) What is Schmidt line? Write its significance.
 - (c) What are the different modes of nuclear shape vibration? What is the lowest possible mode of shape vibration?
 - (d) Define Detector sensitivity. Mention on which factors does Detector sensitivity depend.
 - (e) What are Absolute efficiency and Intrinsic efficiency?
 - (f) What are the role of magnetic field and electric field in a cyclotron?
 - (g) Explain the consequences when heavy ions are used in cyclotron.
- 3. Answer any five of the following: $5\times 5=25$
 - (a) Discuss the spin-parity of excited states of Te-120 nucleus in the light of vibrational model.

- (b) Why parity in rotational model is assumed to be positive? The first excited state of the rotational spectrum of the nucleus ²³⁸₉₂ U has an energy 45 KeV above the ground state. Calculate the energy (in KeV) of the second and third excited state.
- (c) Why the lowest order of electric multipole moment that may arise from a non-spherical charge distribution is the electric quadrupole moment. With the help of single particle shell model calculate the quadrupole moment of ²⁷₁₃ Al.
- (d) Write down the Bethe-Bloch equation and describe each term in details. Mention limitations of Bethe-Bloch formula. 4+1=5
- (e) What do you mean by dead time of a detector? Discuss about the models of dead time detector. Why the concept of dead time is important in the context of particle detector.

 1+3+1=5
- (f) Write short note on Surface Barrier Detector.

- (g) A fixed frequency cyclotron has an oscillation frequency of 12 MHz and a dee radius of 0.55 meter. It is used to accelerate deuterium, $m_d = 3.34245 \times 10^{-27}$ kg, and $e=1.6\times 10^{-19}$ C. Calculate
 - (i) the Magnetic flux density
 - (ii) Energy to which deuterium is accelerated.
- 4. Answer any four of the following: $10\times4=40$
 - (a) Discuss how nuclear magnetic moment is calculated with the help of single particle shell model. Using single particle shell model calculate the nuclear magnetic moment of ${}^{13}_{6}$ C and ${}^{15}_{7}$ N and compare it with the experimental value: $\mu\binom{13}{6}$ C)_{exp} $\sim 0.7 \mu \text{N}$; $\mu\binom{15}{7}$ N)_{exp} $\sim -0.28 \mu \text{N}$. Discuss Schmidt's approach to calculate the magnetic moment of a nucleus by taking the example of ${}^{13}_{6}$ C and ${}^{15}_{7}$ N. ${}^{2+4+4=10}$
 - (b) What are the different mechanisms by which a charged particle interacts when it passes through matter. Discuss the working of a scintillation counter and mention its advantages over other detectors. 4+6=10
- 95/63/2 (SEM-3) PHY 303,304(N/O) (5) [Turn over

- (c) Write in detail the principle, working, and construction for Van de Graaff generator. Which type of particles can be accelerated using Van de Graaff generator? 8+2=10
- (d) Write in detail the principle, working and construction for the Betatron. How is the problem of "loss of resonance" resolved?

 8+2=10
- (e) (i) A baryon X decays by strong interaction as $X \to \Sigma^+ + \pi^- + \pi^0$, where Σ^+ is a member of the isospin triplet $(\Sigma^+, \Sigma^0, \Sigma^-)$. What will be the third component of the isospin (I_3) of X?
 - (ii) A particle is a composite state of three quarks u, d, and s. What will be the electric charge, spin and strangeness of the particle?
 - (iii)Build up the structure of spin-1 mesons and spin 3/2 baryons in terms of quarks.

 2+2=4
- (f) (i) What is $\theta \tau$ puzzle? Discuss how Lee and Yang solved the mystery. 2+2=4
 - (ii) Describe C. S. Wu's experiment which lead to the discovery of parity violation in weak interaction.

(Theory Paper)

Paper Code: PHY-304 (OLD)

(Nuclear Physics-II)

Full Marks - 80

Time - Two hours

The figures in the margin indicate full marks for the questions.

- 1. Choose the correct answer from the following: $1 \times 5=5$
 - (a) When a photon interacts with matter, pair production occurs if the energy E (in MeV) of the photon is
 - (a) 0.1 < E
- (b) 0.1 < E < 10
- (c) E > 10
- (d) None of the above
- (b) In elastic scattering the incident particle after striking the target-nucleus leaves with
 - (ii) less energy (ii) greater energy (iii) same energy (iv) zero energy

95/63/2 (SEM-3) PHY 303,304(N/O) (7) [Turn over

- (c) In nuclear reaction, the physical quantity, which is *not* conserved is
 - (i) total energy.
 - (ii) angular momentum.
 - (iii)charge.
 - (iv) electric quadrupole moment.
- (d) Which of the following statement is correct?
 - (a) A is a baryon with positive charge.
 - (b) Intermediate vector bosons are composite in nature.
 - (c) e, μ, and τ are known as mesons.
 - (d) Mesons and baryons are collectively known as hadrons.
 - (e) Choose the particle with strangeness quantum number, s=3 from the
 - (i) $\bar{\Omega}^+$ (ii) Ξ^-
 - (iii) Ω^- (iv) Δ^+
- 95/63/2 (SEM-3) PHY 303,304(N/O) (8)

- 2. Answer any five of the following: $2 \times 5 = 10$
 - (a) Neutron is chargeless but it has a non-zero magnetic moment. Why?
 - (b) What is Schmidt line? Write its significance.
 - (c) What are the different modes of nuclear shape vibration? What is the lowest possible mode of shape vibration?
 - (d) What are Absolute efficiency and Intrinsic efficiency?
 - (e) What are Stripping and Pick-up reactions?
 Give one example of each.
 - (f) What is the necessity of nuclear collective models?
- 3. Answer any five of the following questions: 5×5=25
 - (a) Write the success and failure of single particle shell model.
 - (b) Discuss the spin-parity of excited states of Te-120 nucleus in the light of vibrational model.

95/63/2 (SEM-3) PHY 303,304(N/O) (9) [Turn over

- (c) Why parity in rotational model is assumed to be positive? The first excited state of the rotational spectrum of the nucleus ²³⁸₉₂ U has an energy 45 KeV above the ground state. Calculate the energy (in KeV) of the second and third excited state. 1+4=5
- (d) Why the lowest order of electric multipole moment that may arise from a non-spherical charge distribution is the electric quadrupole moment? With the help of single particle shell model calculate the quadrupole moment of $^{27}_{13}$ AI.
- (e) Write down the Bethe-Bloch equation and describe each term in details. Mention limitations of Bethe-Bloch formula.

4+1=5

- (f) What do you mean by dead time of a detector? Discuss about the models of dead time detector. Why the concept of dead time is important in the context of particle 1+3+1=5
- (g) Write short note on Surface Barrier Detector.

 $10 \times 4 = 40$ Answer any four of the following:

- Discuss how nuclear magnetic moment is calculated with the help of single particle shell model. Using single particle shell model calculate the nuclear magnetic moment of $_{6}^{13}$ C and $_{7}^{15}$ N and compare it with the experimental value: $\mu_{6}^{13}C_{exp} \sim 0.7_{\mu N}$; $\mu \binom{15}{7} N$ _{exp} ~ -0.28 μ N. Discuss Schmidt's approach to calculate the magnetic moment of a nucleus by taking the example of $_6^{13}$ C and 2+4+4=10 $^{15}_{7}N$.
- (b) What are the different mechanisms by which a charged particle interacts when it passes through matter. Discuss the working of a scintillation counter and mention its advantages over other detectors. 4+6=10
- (c) (i) A baryon X decays by strong interaction as $X \rightarrow \Sigma^+ + \pi^- + \pi^0$, where Σ^+ is a member of the isospin triplet $(\Sigma^+, \Sigma^0, \Sigma^-)$. What will be the third component of the isospin (I,) of X?

[Turn over 95/63/2 (SEM-3) PHY 303,304(N/O)

95/63/2 (SEM-3) PHY 303,304(N/O)

60

- (ii) A particle is a composite state of three quarks u, d, and s. What will be the electric charge, spin and strangeness of the particle?
- (iii) Build up the structure of spin-1 mesons and spin 3/2 baryons in terms of quarks.

2+2=4

- (d) (i) What do you mean by nuclear reaction? Explain briefly different types of nuclear reactions with example. 1+5=6
 - (ii) Discuss the mechanism of formation of compound nucleus.
- (e) Write short notes on any two: 5+5=10
 - (i) GM counter
 - (ii) Multi-wire proportional chambers
 - (iii) Multi-Channel Analyzer (MCA).