2022

(Held in 2023)

PHYSICS

(Theory Paper)

Paper Code: PHY 302

(Computational Physics)

Full Marks-40

Pass Marks - 16

Time-Two hours

The figures in the margin indicate full marks for the questions.

- 1. Answer any five of the following questions: $2 \times 5 = 10$
 - (a) Mention one advantage and one disadvantage of Newton-Raphson method.
 - (b) Discuss briefly the method of least squares.
 - (c) Discuss how one can estimate the value of π using Montecarlo method.
 - (d) What is meant by interpolation. Write one advantage of Lagrange interpolation method over Newton's interpolation procedure.

[Turn over

- (e) Briefly explain the Regula-Falsi method for determining the root of a non-linear equation.
- (f) Discuss why Simpson's 1/3 Rule is better than that of the Trapezoidal rule for evaluating integration.
- 2. Answer any six of the following questions:

- (a) Find the real root, which lies between 2 and 3, of the equation $x\log_{10}x-1.2=0$ using Bisection method. Perform three interations.
- (b) Values of x (in degrees) and sin x are given in the following table:

x (in degrees)	15	20	25	30	35	40
sin x	0.258819	0.3420201	0.4226183	0.5	0.5735764	0.6427876

Find the value of sin 38° using Newton's Backward interpolation method.

(c) Fit a function of the form $y = ax^b$ for the following data using method of Least squares:

X	61	26	7	2.6
у	350	400	500	600

(d) Given the initial value problem defined by,

$$\frac{dy}{dx} = y(1+x^2), y(0) = 1$$

and find y(0.2) and y(0.4) by the Runge-Kutta Fourth order method.

(e) Use Simpson's 1/3 rule to approximate the following integration with n=6 subintervals.

$$I = \int_0^{\pi} \sin x \, dx.$$

- (f) The values of x and $\log_{10}x$ are : (300, 2.4771), (304, 2.4829), (305, 2.4843) and (307, 2.4871). Find \log_{10} 301 using Lagrange Interpolation method.
- (g) Solve the system of equations using Gauss Elimination method.

$$4y+2z=1$$

 $2x+3y+5z=0$
 $3x+y+z=11$.

3. Practical: 40 marks.