Total No. of printed pages = 10 63/2 (SEM-3) PHY 304, 305

2021

(held in 2022)

PHYSICS

Paper Code: PHY-304 (New)

(Advanced Condensed Matter Physics-I)

Full Marks - 80

Time - Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions:
- $1\times5=5$
- (a) The n^+-n heterojunction is a
 - (i) Rectifying contact
 - (ii) Ohmic contact
 - (iii) Near Ohmic contact
 - (iv) None of the above

[Turn over

(b) The drift current density under reverse bias is due to the	(e) The gel is a mass.
(i) Minority carriers	(i) Heavy molecular
(ii) Majority carriers	(ii) Semi rigid
(iii) Both majority and minority carriers	(iii) Rigid
(iv) None of the above	(iv) Gaseous.
(c) Which of the following geometry is	2. Answer the following questions: 2×5=10
representing the armchair structure of a carbon nanotube?	(a) Explain the physical mechanism of sputtering with the help of schematic diagram. 2
(i) $\theta = 30^{\circ} (n, n)$	(b) Explain how the film thickness can be
(ii) $\theta = 0^{\circ} (n, 0)$	controlled in DC sputtering technique. 2
(iii) $\theta = 15^{\circ}$ (n, m)	(c) Discuss the pre nucleation theories of thin film growth.
(iv) $\theta = 15^{\circ} (0, m)$	(d) What is band edge and defect state
(d) Chemical vapor deposition is a method which	luminescence? 2
is used to obtain the	(e) What is localized surface plasmon resonance
(i) Semiconductors	phenomena? 2
(ii) Crystalline semiconductors	3. Answer any <i>five</i> of the following questions: $5\times 5=25$
(iii) Conducting compounds	(a) Establish the Einstein relation of mobility and
(iv) Dielectric compounds	diffusion coefficient. 5
2/2 (SEL4 2) DIEV204 0-	*••

- (b) Obtain the junction capacitance of a p-njunction device and also discuss for the p^+-n system. 4+1=5
- (c) What are the different classes of semiconductor heterojunctions? With equilibrium band diagram explain the Type I p-n heteroiunction. 1+4=5
- (d) Obtain the Brus equation and discuss the term red shift and bule shift in optical absorption.
- (e) Explain the term phonon. What is the momentum of phonon? Discuss the Normal and Umklapp process of phonon scattering using relevant momentum vector diagram.

1+1+3=5

- (f) Discuss the principle of spray pyrolysis process of thin film deposition. How to reduce the grain size of thin film in this technique? 4+1=5
- Answer any four of the following questions:

 $10 \times 4 = 40$

(a) Discuss the rectifying and ohmic metalsemiconductor contacts with proper energy band diagrams. Explain the effect of interface states in the metal-semiconductor contacts.

8+2=10

- (b) Obtain the continuity equation for electron and holes, and derive the diffusion current density 5+5=10for excess holes or electrons.
- (c) What is quantum confinement? Show that the dimension of the confinement must be of the order of the de Broglie wavelength. Obtain the density of states of one dimensionally confined 2+3+5=10 system.
- (d) (i) Explain the working mechanism of electron beam evaporation with the help of schematic diagram. Discuss the advantages and disadvantages of this technique. .3+2=5
 - (ii) What are nucleation and crystal growth? Discuss the three modes of thin film 2+3=5growth.
- (e) (i) What do you mean by size effect of resistivity? Discuss the phenomenon of integral and fractional quantum Hall Effect. 1+4=5
 - (ii) How do you describe the optical properties of a solid? Explain the transition mechanism of direct and indirect band gap of a semiconductor with the help of band diagram and give example for each type 1+4=5of transition.

(Theory Paper)

Paper Code: PHY-305 (Old)

(Condensed Matter Physics-II)

Full Marks-80

Time - Three hours

The figures in the margin indicate full marks for the questions.

Answer the following questions:

- (a) Which of the following statement is not true?
 - (i) In AC Josephson effect current persists
 - (ii) In AC Josephson effect the voltage drop across the superconductor is zero
 - (iii) In DC Josephson effect the super conductors are separated by a very small thickness
 - (iv) In AC Josephson effect a very high frequency of electromagnetic radiation emanates from the gap

(6)

- (b) The drift current density under reverse bias is due to the
 - (i) Minority carriers
 - (ii) Majority carriers
 - (iii) Both majority and minority carriers
 - (iv) None of the above
- (c) The coherence length of a superconductor 1
 - (i) The distance where the magnetic field becomes zero
 - (ii) The distance required to fall to 1/e times of the externally applied magnetic field
 - (iii) The distance up to superconducting electron density doesn't change drastically
 - (iv) Independent of the fermi velocity and energy gap
- (d) A phonon is emitted or absorbed in
 - (i) Elastic scattering of a photon by a crystal
 - (ii) Inelastic scattering of a photon by a crystal
 - (iii) Both the elastic and inelastic scattering of a photon by a crystal
 - (iv) None of the above

		•	•		
: :::	(е	transition be band results	WINDOW CO	dgap semi nduction bar	conductor, ad and valanc
	; ;	(i) Heat		(ii) Light	
•		(iii) Both	•	(iv) None	of the above
2.		nswer the follo		estions:	2×5=1(
	(a)	Discuss th medium.	e Beers	law for a	n absorbing
•		Explain the i		, eah semica	inductors 2
		What is de what purpos	Haas var e it is use	n Alphen ei d?	ffect and for
		What is isot Explain with	# -	.	onductivity?
	(e)	What is BCS	ground s	tate?	2
3.	Ans	swer any five (of the foll	owing ques	tions:
	(a)	Show that the junction is given	he denle		
		$W = \left[\frac{2 \in kT}{q^2} \right]$	$\ln \frac{N_a N_d}{n_i^2}$	$\left(\frac{1}{N_a} + \frac{1}{N_d}\right)$	$\frac{1}{2}$
97/6	53/2 ((SEM-3) PHY		(8)	- 60

- (b) Deduce the flux quantization in superconducting ring.
- (c) What is Frohlich's electron-phonon interaction? Explain the BCS theory of superconductivity.
- (d) Explain the term phonon. What is the momentum of phonon? Discuss the Normal and Umklapp process of phonon scattering using relevant momentum vector diagram.

 1+1+3=5
- (e) Obtain the dispersion relation of a linear dielectric medium using Maxwell's equations in the absence of free charge and current densities.
- (f) What is cyclotron resonance? Obtain the expression for resonant frequencies of an electron in magnetic field.

 1+4=5
- 4. Answer any *four* of the following questions: $10\times4=40$
 - (a) Discuss the rectifying and ohmic metalsemiconductor contacts with proper energy band diagrams. Explain the effect of interface states in the metal-semiconductor contacts.

8+2=10

97/63/2 (SEM-3) PHY 304, 305 (9) [Turn over

- (b) Obtain the continuity equation for electron and holes, and derive the diffusion current density for excess holes or electrons.

 5+5=10
- (c) What is London penetration depth? Derive the expression for London equations in superconductors and discuss their significance.

 2+8=10
- (d) (i) Explain the classical theory of the response of a solid to an oscillating electromagnetic field and obtain an expression for the real part of the dielectric function in terms of the plasma frequency.
 - (ii) State and explain the Franck-Condon principle. 1+4=5
- (e) (i) Explain the term excitons. How exciton absorption affects the absorption spectrum of a semiconductor?

 1+4=5
 - (ii) How do you describe the optical properties of a solid? Explain the transition mechanism of direct and indirect band gap of a semiconductor with the help of band diagram and give example for each type of transition.

(10)