Total No. of printed pages = 12

63/2 (SEM-1) PHY 103

2021

(held in 2022)

PHYSICS

(Theory Paper)

Paper Code: PHY-103 (New)

(Quantum Mechanics-I)

Full Marks-80

Time-Three hours

The figures in the margin indicate full marks for the questions.

- 1. Choose the correct answer from the following:
 - 1×5=5
 - (a) Perturbation theory is a systematic procedure for obtaining
 - (i) Exact solutions to the unperturbed problem
 - (ii) Exact solutions to the perturbed problem
 - (iii) Approximate solutions to the perturbed problem
 - (iv) None of the above

[Turn over

- (b) The commutation relation between x and P_x^n is
 - (i) niħP.n-l

(ii) niħPN

(iii) nħPⁿ⁻¹

- (iv) nhpn
- (c) The wave function $\psi(\vec{r},t)$ is said to be normalized if
 - (i) $\int |\Psi(\vec{r},t)| d\tau = 1$
 - (ii) $\int |\Psi(\vec{r},t)|^2 d\tau = 1/N^2$
 - (iii) $\int |\Psi(\vec{r},t)|^2 d\tau = 1$
 - (iv) $\int |\Psi^*(\vec{r},t)| d\tau = 1$
- Stationary states are those for which the probability density ρ is
 - (i) time-dependent (ii) time-independent
 - (iii) space-dependent (iv) space-independent
- (e) If R and T be the reflection and transmission probabilities of a particle through a potential step, then
 - (i) R-T = constant
 - (ii) R + T = 1
 - (iii) R + T = 0
- (iv) $R + T = \infty$
- 104/63/2(SEM-1) PHY 103

- Answer the following questions:
- $2 \times 5 = 10$
- (a) Give Born's interpretation of wave function.
- (b) Write two properties of ket vectors.
- (c) Define projection operator. Show that the operator $|\phi\rangle\langle\phi|$ is a projection operator when $|\phi_i\rangle$ is normalized.
- (d) Explain the significance of zero-point energy of a particle in a one-dimensional box.
- (e) Why the prescription of non-degenerate perturbation theory is not applicable for degenerate energy levels?
- Answer any five of the following:
- $5 \times 5 = 25$
- (a) Define expectation value. A particle constrained to move along X-axis in the domain $0 \le x \le L$
 - has a wave function $\Psi(x) = \sin\left(\frac{n\pi x}{1}\right)$. Normalize the wave function and find the

expectation value of its momentum. 1+2+2=5

(b) Define dimension and basis of a vector space. Show that every vector in a finite dimensional vector space V over the field F can be uniquely expressed as a linear combination of the vectors of its basis.

(3)

- 104/63/2(SEM-1) PHY 103
- Turn over

2+3=5

- (c) State the admissibility conditions of wave functions. A wave function of a particle is $\Psi(x) = Ae^{-ax^2}$ defined in the domain $-\infty < x < \infty$. Find the probability of finding the particle in the region $0 < x < \infty$. 2+3=5
- (d) What is density of state? Show that the density of states per unit length is proportional to $E^{-\frac{1}{2}}$. 2+3=5=10
- (e) Find the first order correction and hence the ground state energy for a harmonic oscillator, when a perturbation γx⁴ is applied.
- (f) Suppose we put a delta function bump i.e. $H' = \alpha \delta \left(x \frac{a}{2} \right)$ in the center of the infinite square well. Find the 2nd order correction to the energies.
- (g) Discuss briefly the implication of natural unit. Show that 2+3=5 $1m \approx 5.07 \times 10^{15} hc/GeV$.

- 4. Answer any four of the following questions: $10\times4 = 40$
 - (a) A particle traveling with energy E along X-axis has in its path a rectangular potential barrier of height $V_0 > E$ and width a.
 - (i) Show that there is a finite probability of transmission even if $E < V_0$
 - (ii) Apply the result to explain the phenomenon of α -decay in nuclei. 5+5=10
 - (b) Using operator algebra, derive the following expression for uncertainty relation between two operators:

$$\Delta A \Delta B \ge \frac{1}{2} |\langle [\hat{A}, \hat{B}] \rangle|$$

Hence derive the expression for Heisenberg uncertainty relation between the components of position and momentum operators.

8+2=10

(c) Write a few important features of Klein-Gordon equation. Derive the Klein-Gordon equation in covariant form. Show that Klein-Gordon equation can not predict the spin i.e it only describes spin-zero particles. 2+3+5=10

- (d) Discuss briefly the variational method. Using the principle of variational method estimate the ground state energy of the hydrogen atom. Use the trial wave function as $\Psi(r,\theta,\phi) = e^{-r/\alpha}$. Calculate the dimension of the scale parameter α .
- (e) Using first-order perturbation theory, estimate the energy of the first excited state for a cubical well:

$$V(x,y,z) = \begin{cases} 0, & \text{if } 0 < x < L, \ 0 < y < L, \ 0 < z < L \end{cases}$$
otherwise

if the following perturbation is applied,

$$H' = V_0 L^3 \delta \left(x - \frac{L}{4} \right) \delta \left(y - \frac{3L}{4} \right) \delta \left(z - \frac{L}{4} \right).$$

(Theory Paper)

Paper Code: PHY-103 (Old)

(Quantum Mechanics-I)

Full Marks-80

Time - Three hours

The figures in the margin indicate full marks for the questions.

- 1. Choose the correct answer from the following: $1 \times 5=5$
 - (a) The wave function $\Psi(\vec{r},t)$ is said to be normalized if

(i)
$$\int |\Psi(\vec{r},t)| d\tau = 1$$

(ii)
$$\int |\Psi(\vec{r},t)|^2 d\tau = 1/N^2$$

(iii)
$$\int |\Psi(\vec{r},t)|^2 d\tau = 1$$

(iv)
$$\int |\Psi^*(\vec{r},t)| d\tau = 1$$

(b) The commutation relation between x and P_x^n is

(7)

(i) $ni\hbar P_x^{n-1}$

(ii) nihP.

(iii) $n\hbar P_x^{n-1}$

(iv) $n\hbar P_x^n$

- (c) The momentum operator in one dimension is
 - (i) $-i\hbar \frac{\partial}{\partial x}$ (ii) $i\hbar \frac{\partial}{\partial x}$

- (iii) $-i\hbar \frac{\partial}{\partial t}$ (iv) $-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial v^2}$
- (d) If R and T be the reflection and transmission probabilities of a particle through a potential step, then
 - (i) R-T = constant
- (ii) R+T=1
- (iii) R+T=0
- (iv) $R+T=\infty$
- (e) Which one of the following is correct?
 - (i) $a_+\Psi_n = \sqrt{n+1} \Psi_{n+1}$
 - (ii) $a_-\Psi_n = \sqrt{n-1} \Psi_n$
 - (iii) $a_+\Psi_n = \sqrt{n-1} \Psi_{n+1}$
 - (iv) $a_+\Psi_n = \sqrt{n} \Psi_{n+1}$

- 2. Answer the following questions:
- $2 \times 5 = 10$
- (a) Give Born's interpretation of wave function.
- (b) Write two properties of ket vectors.
- (c) Why the prescription of non-degenerate perturbation theory is not applicable for degenerate energy levels?
- (d) Show that the quantity $|\Psi\rangle\langle\Psi|$ is a projection operator when $|\Psi\rangle$ is normalized.
- (e) Consider the ket: $|\Psi\rangle = \begin{pmatrix} 5i \\ 2 \\ -i \end{pmatrix}$. Is $|\Psi\rangle$ normalized? If not, normalize it.
- 5×5=25 3. Answer any five of the following:
 - (a) Define expectation value. A particle constrained to move along X-axis in the domain $0 \le x \le L$ has a wave function $\Psi(x) = \sin\left(\frac{n\pi x}{L}\right)$. Normalize the wave function and find the expectation value of its momentum. 1+2+2=5

- (b) Find the constant β so that the states $|\Psi\rangle = \beta |\phi_1\rangle + 3|\phi_2\rangle$ and $|x\rangle = 4\beta |\phi_2\rangle 9|\phi_2\rangle$ are orthogonal. Given, the states $|\phi_1\rangle$ and $|\phi_2\rangle$ are orthonormal.
- (c) What does commutation relation in quantum mechanics signify? If $A = \frac{d}{dx} + x$ and $A^{\dagger} = -\frac{d}{dx} + x$, evaluate $[A, A^{\dagger}]$. 1+4=5
- (d) Define Hermitian and skew-Hermitian operator. Show that $(\hat{A} + \hat{A}^{\dagger})$ is Hermitian while i $(\hat{A} + \hat{A}^{\dagger})$ is skew-Hermitian. $\frac{1+1+1\frac{1}{2}+1\frac{1}{2}=5}{1+1+\frac{1}{2}+1\frac{1}{2}=5}$
- (e) What do you mean by projection operator?
 Show that the product of two commutating operator.

 1+4=5
- (f) Suppose we put a delta function bump i.e. $H' = \alpha \delta \left(x \frac{a}{2} \right)$ in the center of the infinite square well. Find the 2nd order correction to the energies.

4. Answer any *four* of the following questions: $10 \times 4 = 40$

(a) Using operator algebra, derive the following expression for uncertainty relation between two operators:

$$\Delta A \Delta B \ge \frac{1}{2} |\langle [\hat{A}, \hat{B}] \rangle|.$$

Hence derive the expression for Heisenberg uncertainty relation between the components of position and momentum operators. 8+2=10

- (b) Calculate the ground state energy and normalized ground state wave function for a linear harmonic oscillator with the help of operator algebra.
- (c) Using first-order perturbation theory, estimate the energy of the first excited state for a cubical well:

$$V(x,y,z) = \begin{cases} 0, & \text{if } 0 < x < L, \ 0 < y < L, \ 0 < z < L \\ \infty & \text{otherwise} \end{cases}$$

Turn over

if the following perturbation is applied,

$$H' = V_0 L^3 \delta \left(x - \frac{L}{4} \right) \delta \left(y - \frac{3L}{4} \right) \delta \left(z - \frac{L}{4} \right).$$

- (d) Discuss briefly the variational method. Using the principle of variational method estimate the ground state energy of the hydrogen atom. Use the trial wave function as $\psi(\mathbf{r}, \theta, \phi) = e^{-r/\alpha}$. Calculate the dimentions of the scale parameter α . 3+6+1=10
- (e) Write a few important features of Klein-Gordon equation. Derive the Klein-Gordon equation in covariant form. Show that Klein-Gordon equation can not predict the spin i.e it only describes spin-zero particles. 2+3+5=10

- (d) Discuss briefly the variational method. Using the principle of variational method estimate the ground state energy of the hydrogen atom.
 Use the trial wave function as ψ(r,θ,φ) = e^{-r/α}.
 Calculate the dimentions of the scale parameter α.
- (e) Write a few important features of Klein-Gordon equation. Derive the Klein-Gordon equation in covariant form. Show that Klein-Gordon equation can not predict the spin i.e it only describes spin-zero particles. 2+3+5=10

(12)