63/2 (SEM-4) CHM 403

2023

CHEMISTRY

(Theory Paper)

Paper Code: CHM 403

(Transition Metals and Inorganic Materials)

Full Marks - 80

Pass Marks - 32

Time - Three hours

The figures in the margin indicate full marks for the questions.

1. Choose the correct answers:

- $1\times4=4$
- (a) Ni²⁺ can have two unpaired electrons in
 - (i) Octahedral geometry only
 - (ii) Square planner geometry only
 - (iii) Tetrahedral geometry only
 - (iv) Both Tetrahedral geometry and Octahedral geometry

[Turn over

- (b) For a d² system where electron spins are parallel its spin multiplicity is
 - (i) 1

(ii) 2

(iii) 4

- (iv) 3
- (c) Doping of silicon (Si) with boron (B) leads to
 - (i) n-type semiconductor
 - (ii) p-type semiconductor
 - (iii) metal
 - (iv) insulator
- (d) Magnetic moment of a metal complex is 5.9 B.M. Number of unpaired electrons in the complex is
 - (i) 2

(ii) 3

(iii) 4

- (iv) 5
- 2. Answer any five of the following questions:

5×5=25

(a) Deduce the matrices for the symmetry operations in point group C_{3v} considering the transformations of the general point (x, y, z). State and explain what is meant by representation of group.

- 62/63/2 (SEM-4) CHM 403
- **(2)**

- (b) What are direct product representations?

 State and explain how direct products are useful in bonding theories and spectroscopy.
- (c) Evaluate the following:

$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

- (d) Derive the matrix representation for reflection operation.
- (e) Determine the trace value or character of each symmetry operations present in cisbutadiene molecule?
- (f) Identify the point group of BCl₃ molecule? Find the symmetry elements present?
- (g) Construct the hybrid orbital for linear molecule?
- 3. Answer any *four* of the following questions: $4\times4=16$
 - (a) What are the factors that affect the magnitudes of splitting (Δ) of d-orbitals?

- (b) What are correlation diagrams? Construct the correlation diagram for a d² ion and indicate how the corresponding Tanabe-Sugano diagram may be obtained from it.
- (c) State what spin-orbit coupling is and explain its importance in the ligand fieldtheoretical treatment of the electronic structure of metal complexes.
- (d) Comment on 'ligand field theory' as applied to coordination complexes and discuss how it is related to or different from crystal field theory.
- (e) Write down the spectroscopic (free ion) ground terms as well as the weak field (tetrahedral) ground terms for the bivalent first row transition metal ions.
- 4. Answer any three of the following questions:

5×3=15

(a) Why the intensities of absorption band in octahedral complexes are weaker than in tetrahedral complexes? Give reasons.

- (b) Describe the selection rules for electronic spectra.
- (c) [Cr(H₂O)₆]³⁺ shows absorption bands at 17000 cm⁻¹, 24000 cm⁻¹ and 37000 cm⁻¹. Calculate the absorption frequency corresponding to 10 Dq.
- (d) Point out the differences between Static and Dynamic Jahn-Teller effect? Explain with suitable examples.
- 5. Answer any *two* of the following questions: $5 \times 2 = 10$
 - (a) The ionic radius of K⁺ is 133 pm, whereas that of Na⁺ is 98 pm. Do you expect K⁺ to be a common substitution impurity in compounds containing Na⁺? Give reason.
 - (b) Show that, under O_h symmetry, the LGO in diagram (a) belongs to a t_{2g} set.
 - (c) Write short notes on:
 - (i) Molecular magnets
 - (ii) Piezo-electric materials.

6. Answer any two of the following questions:

5×2=10

- (a) What causes electrons, which repel each other because of their negative charge, to pair up and travel together in superconductors? Discuss the superconductivity in high-Tc cuprates from maximal to minimal dissipation.
- (b) What are solid electrolysis? Give some example and explain how those materials are useful in battery applications.
- (c) What is the piezoelectric effect in ultrasound? What happens when stress is applied to a piezoelectric material?

