2015

MATHEMATICS

Paper: 101 (Old Course)

ALEGEBRA

Full Marks: 80

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Answer any three of the followings:

 $3\times 5=15$

٢

- (a) If G is an abelian group with N is any subgroup of G, prove that G/N is also abelian.
- (b) Prove that an infinite cyclic group is isomorphic to the additive group of integers, (Z,+).
- (c) If G is a cyclic group of order 30 with a generator a, then find all the distinct element of the subgroup gen erated by a⁵. Also find all the generator of the group G.
- (d) By Using the Sylow's Theorem, show that a group of order 35 is not a simple group.
- 2. Answer the followings:

- $5 \times 2 = 10$
- (a) Prove that if G is a finite p-group, then G is solvable.
- (b) If G is an abelian group having a composition series

then show that G is finite.

- 3. If R is a commutative ring with unity and M is an ideal of R then M is a maximal ideal of R if and only if R/M is a field.
- 4. Answer any two of the followings:

4 × 2 =8

- (a) Prove that for any two ideals A and B of a ring R, $A \cup B$ is an ideal of R if and only if either $A \subseteq B$ or $B \subseteq A$.
- (b) Let R be a ring and R₁ be defined by the set $R_1 = \{\binom{a0}{00}: a \in R\}$. Then show that there exists an isomor phism from R to R₁.
- (c) Let I be an ideal of a commutative ring with unity, then R = I if 1 ∈ I.
- 5. Answer any three questions

5 × 3 = 15

- (a) Show that every Euclidean Domain is a Principal Integral Domain.
- (b) Show that the ring $Z[\sqrt{-5}]$ is not a UFD.
- (c) Show that the ring of Gaussian integers, Z[i] is an Eu clidean domain.
- (d) In Q[x], the set of all polynomial over the field of rational Q, then show that the ideal < x + 2 > is maximal.
- 6. Answer the followings:

5 × 3 = 15

(a) Let F be a field and a and b be members of a field con taining F. Suppose m and n are relative are algebraic of

- degree and over F respectively. Suppose m and n are relatively prime. Show that [F(a,b):F] =mn.
- (b) Show that an element a of an extension field K is alge braic over a field F if and only if [F (a): F] is finite.
- (c) Show that is algebraic over Q of degree 6.
- 7. Answer the followings:
 - (a) Let W be a subspace of a finite dimensional vectorV_F.

 Then establish that dim(V/W) = dim(V) dim(W). 6
 - (b) Show that the vectors (α_1, α_2) and (β_1, β_2) are linearly dependent if and only if α_1 , $\beta_2 = \alpha_1$, β_2 .