BU/PG(4): MTC 401

2016

MATHEMATICS

MTC 401

PARTIAL DIFFERENTIAL EQUATIONS

Full Marks: 80

Time: 3 Hrs

Figures in the right hand margin indicate full marks for the question

1. Answer any two questions:

$$2\times10=20$$

a) Solve
$$(D^2 - 3DD' + 2D'^2)z = e^{2x-y} + e^{x+y} + \cos(x+2y)$$
.

b) Solve
$$(D^2 - DD' + D' - 1)z = \cos(x + 2y) + e^y$$
.

c) Reduce
$$\frac{\partial^2 z}{\partial x^2} = x^2 \frac{\partial^2 z}{\partial y^2}$$
 to canonical form.

2. Answer any two questions:

$$2\times10=20$$

- a) Show that in a cylindrical coordinates Laplace's equation has solution of the form $R(\rho)e^{\pm mz \pm in\varphi}$ where $R(\rho)$ is a solution of Bessel's equation.
- b) Discuss the Neumann problem in a rectangle.

- c) Evaluate the steady temperature in a rectangular plate of length a and width b, the sides of which are kept at temperature zero, the lower end is kept at temperature f(x) and the upper edge is kept insulated.
- 3. Answer any two questions:

$$2 \times 10 = 20$$

- a) Solve the wave equation $\frac{\partial^2 u}{\partial r^2} + \frac{2}{r} \frac{\partial u}{\partial r} + \frac{1}{r} \frac{\partial^2 u}{\partial \theta^2} + \frac{\cot \theta}{r^2} \frac{\partial u}{\partial \theta} + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 u}{\partial \phi^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$ if there is axial symmetry and solutions remain finite for $\theta = 0$.
- b) Discuss the solution of transverse vibrations of a this membrane bounded by a circle of radius a in xy —plane described by the function z(x,y,t) satisfying the wave equation, $\frac{\partial^2 z}{\partial r^2} + \frac{1}{r}\frac{\partial z}{\partial r} + \frac{1}{r^2}\frac{\partial^2 z}{\partial \theta^2} = \frac{1}{c^2}\frac{\partial^2 z}{\partial t^2}$ with conditions z=0 on r=a and z=f(r), $\frac{\partial z}{\partial t}=0$ at t=0.
- c) Discuss D'Alemberts solution of one dimensional wave equation.
- 4. Answer any two questions:

$$2 \times 10 = 20$$

- a) Determine the temperature in a sphere of radius a when its surface is maintained at zero temperature and its initial temperature is $f(r, \theta)$.
- b) Obtain the solution of the two-dimensional diffusion equation $\frac{\partial^2 \theta}{\partial x^2} + \frac{\partial^2 \theta}{\partial y^2} = \frac{1}{k} \frac{\partial \theta}{\partial t}.$
- c) Determine the temperature distribution in the infinite cylinder the initial temperature is θ and the surface is maintained at zero temperature.
