2017

MATHEMATICS

Paper: MTC 205

TOPOLOGY

Full Marks: 80 Time: 3 hours

The figures in the margin indicate full marks for the questions

- (a) Let (X, 𝒯) be a topological space. Show that a subcollection 𝒯 of 𝒯 is a base for 𝒯 if and only if for each G ∈ 𝒯 and for each x ∈ G there is B ∈ 𝒯 such that x ∈ B ⊆ G.
 - (b) Let A be a subset in a topological space (X, \mathcal{T}) . Show that $A \cup A^d$ is closed in X. Hence show that $\bar{A} = A \cup A^d$. 3 + 2 = 5

or

Let X be an infinite set and $f: \mathbb{P}(X) \to \mathbb{P}(X)$ be a function defined by

 $f(A) := \left\{ \begin{array}{ll} A, & \text{if } A \text{ is finite.} \\ X, & \text{if } A \text{ is infinite.} \end{array} \right.$

Show that f satisfies the Kuratowski closure axioms. Hence find the topology induced by f. 3+2=5

- (c) Let $f: \mathbb{R} \to \mathbb{R}$ be a function defined by $f(x) := \begin{cases} x, & \text{if } x \leq 1, \\ x+2, & \text{if } x > 1. \end{cases}$ Check whether
 - i. f is $\mathcal{U} \mathcal{U}$ is continuous.
 - ii. f is $\mathscr{T} \mathscr{T}$ is continuous.

5

	(d)	Let f be a continuous open function from a topological space (X, \mathcal{T}) onto another space (Y, \mathcal{T}^*) . Show that \mathcal{T}^* is the quotient topology on Y relative to f .
2.	(a)	Show that in a second countable space every non-empty collection of disjoint open subsets of X is countable. or 5
		Show that In a second countable space every open set can be expressed
		as a countable union of open sets.
	(b)	Show that second countability implies the Lindelöf. Does the converse is true? $4+1=5$
	(c)	Show that every open subspace of a separable space is separable. Does the result is true for every subset? $4+1=5$
	(d)	Show that a topological space is T_1 if and only if every singleton subset is closed.
	(e)	Let X be a first countable space. Then show that X is T_2 -space if every convergent sequence in X has a unique limit point.
3.	(a)	Show that a compact subset of a Hausdorff space is closed. Does the converse is true? $4+1=5$
	(b)	Show that a every compact Hausdorff space is Tychonoff space. 5 or
		Show that every compact regular space is normal. 5
	(c)	
		Show that a dense subset of a locally compact Hausdorff space, is locally compact if and only if it is open. 5
		or
		Show that in a locally compact Hausdorff space, a subset is locally com-
		pact if and only if it is locally closed subset. 5

2

P.T.O.

(d) Show that a topological space is disconnected if and only if there exists a non-empty clopen proper subset of X. Hence show that \mathbb{R} with lower topology is disconnected. 3+2=5

or

Show that the components of a totally disconnected space X are singleton subset of X.

- 4. (a) Let $\{(X_{\alpha}, \mathscr{T}_{\alpha}) \mid \alpha \in J\}$ be an arbitrary collection of topological spaces and \mathscr{T} be a topology on $X := \prod_{\alpha \in J} X_{\alpha}$. Show that \mathscr{T} is the product topology if and only if \mathscr{T} is the smallest topology for which the projections are continuous.
 - (b) Let F_1 and F_2 be two disjoint closed subsets of $\mathbb{R}_{\mathscr{L}} \times \mathbb{R}_{\mathscr{L}}$. Can you find a continuous function $f: \mathbb{R}_{\mathscr{L}} \times \mathbb{R}_{\mathscr{L}} \to [0, 1]$ such that $f(F_1) = 1$ and $f(F_2) = 0$. Justify your answer. Where \mathscr{L} is the lower limit topology on \mathbb{R} . 2+3=5
 - (c) Let $\{(X_{\alpha}, \mathscr{T}_{\alpha}) \mid \alpha \in J\}$ be an arbitrary collection of topological spaces and \mathscr{T} be the product topology on $X := \prod_{\alpha \in J} X_{\alpha}$. Show that product space is compact if and only if each space is compact.

or

Let $(X := \prod_{\alpha \in J} X_{\alpha}, \mathcal{T})$ be the product space of an indexed family of spaces $\{(X_{\alpha}, \mathcal{T}_{\alpha}) \mid \alpha \in J\}$. Show that X is connected if and only if for each $\alpha \in J$, X_{α} has the corresponding property.

(Symbols are in their usual meaning)
