BU/EX/PG/SEM-1/101

2015

MATHEMATICS

Paper: 101

REAL ANALYSIS

Full Marks: 80

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Attempt each of the following:
 - (a) Can it be possible to arrange the real numbers in a sequence?
 - (b) Does there exists a sequence of real valued continuous functions $\{f_n\}_{n=1}^{\infty}$ defined on [- 2, 2] such that $\{f_n\}_{n=1}^{\infty}$ converges uniformly to a function f on [- 2, 2],

$$\text{defined by f(x)} := \begin{cases} x \sin \frac{1}{x_*}, & \text{if } x \neq 0. \\ 1, & \text{if } x \neq 0. \end{cases}$$

Justify your answer.

$$1 + 1 = 2$$

(c) State the basic restriction on ' α ' in the Reimann-Steiltjes integral $\int_a^b f d\alpha$.

(1)

P.T.O.

- (d) What can you say about the completeness of a discrete metric space?
- 2. (a) Show that a countable union of countable sets is count able. Hence show that the set of irrational numbers is not countable. 3 + 2 = 5
 - (b) Show that the set of infinite binary sequence is not countable.
 - (c) Find the cardinality of Z[x], the set of all polynomial with integer co-efficient.

OF

Find the cardinality of $\mathbb{Z}[i] := \{a + ib | a, b \in \mathbb{Z}\}$

- 3. (a) Attempt any two of the following:
 - i. Let {f_n}[∞]_{n=1} be a sequence of real valued functions defined on a closed interval [a, b] ⊆ ℝ such that {f_n}[∞]_{n=1} converges uniformly to a function f on [a, b]. Let ∀ n ∈ IN, f_n is integrable on [a, b].
 Show that

$$\int_{a}^{x} f dt = \lim_{n \to \infty} \int_{a}^{x} f dt, \forall n \in IN,$$

ii. Prove or disprove that the sequence $< f_n >$, where

$$fn(x) := \frac{x}{1 + nx^2}, \forall x \in \mathbb{R}$$

(2)

is uniformly convergent on anyclosed interval.

5

- iii. State the Weierstrass Approximation theorem for uni form approximation of a realvalued continuous function defined on a closed interval. Applying this theorem, show that if $f: [0, 1] \to \mathbb{R}$ is a continuous function such that $\int_0^1 x^{n} f(x) dx = 0$, for n = 0, 1, 2, ..., then f(x) = 0; $\forall x \in [0, 1]$.
- (b) Find the Fourier coecients and Fourier series of the function f defined by $f(x) := \begin{cases} 0, & \text{if } \pi \le x < 0. \\ 1, & \text{if } 0 \le x \le \pi. \end{cases}$ and $f(x + 2\pi) = f(x)$

or

Explain in brief, how Fourier series enable us to synthe size the sounds of conventional musical instruments? 5

- 4. Attempt any two of the following:
 - (a) Show that the function $f(x, y) := x^4 + x^2y + y^2, (x, y) \in \mathbb{R} \text{ has a minimum at}$ (0, 0).
 - b) Let the roots of the equation in $\lambda, (\lambda x^3) + (\lambda y^3) + (\lambda z^3) = 0 \text{ be u, v, w.}$ Show that $\frac{\partial(u, v, w)}{\partial(x, y, z)} = -2 \frac{(y z)(z x)(x y)}{(v w)(w u)(u v)}.$
 - Find the shortest distance from the origin to the hyperbola $x^2 + 8xy + 7y^2 = 225$, z = 0.

(3)

P.T.O.

- 5. (a) Attempt any two of the following:
 - i. Show that a function of bounded variation can be ex pressible as a difference of two monotone increasing functions. Does the converse is true?
 - ii. Show that the function $f:[0, 1] \rightarrow \mathbb{R}$, defined by

$$f(x) := \begin{cases} x^2 \sin\left(\frac{1}{x}\right), & \text{if } 0 < x \le 1\\ 0, & \text{if } x = 0. \end{cases}$$

is of bounded variation on [0, 1].

iii. Compute the positive, negative and the total variation functions of

$$f(x) := 3x^2 - 2x^3$$
 for $-2 \le x \le 0$.

(b) Let f be a continuous real valued function defined on the interval [a, b] such that $f \in R(\alpha)$. Show that $\exists \xi \in [a, b]$ such that $\int_a^b f \, d\alpha = f(\xi) \{\alpha(b) - \alpha(a)\}$.

Can it be possible to find ξ in the open interval]a, b[? 4 + 1 = 5

or

(4)

Lef f(x) := x and α $(x) := x + [x], x \in [R, [x]]$ stands for greatest integer function. Show that $\int_1^3 f d\alpha$ is exists and then evaluate $\int_1^3 f d\alpha$.

(a) Let f and g be two continuous functions from a metric space (X, d₁) into the metric space (Y, d₂) such that f(x) = g(x), ∀ x ∈ A, where A is a non empty subset of X. Show that f(x) = g(x), ∀ x ∈ A.

Hence show that if f and g are two real valued continuous functions defined on \mathbb{R} such that f(x) = g(x),

$$\forall \chi \in \mathbb{Q}$$
, then $f(x) = g(x)$, $\forall x \in \mathbb{R}$. $4 + 1 = 5$

or

Let f be a real-valued function defined on a metric space (X, d). Show that f is continuous on X iff for any $c \in \mathbb{R}$, the following sets

$$\{x|f(x) < c\}$$
 and $\{x|f(x) > c\}$ are open in X. 5

- (b) Let (X, d) be a compact metric space. Let $\mathsection \mathsection \mathsect$
- (c) Show that D := $\{(x, y) | x \neq 0, y = \sin \frac{1}{x} \}$ is a disconnected subset of \mathbb{R}^2 .

or

(5)

Show that a metric space is connected iff every real-valued continuous function 'f' has the intermediate value property.

5

(d) Show that Q is of rst category in R with respect to the usual metric.

or

Let (X, d) be a complete metric space such that each $x \in X$ is a limit point of X. By using Baire's category theorem, show that X is uncountable.

5

__ x ___