2018 MATHEMATICS MAT 105

TENSOR ANALYSIS AND LINEAR ALGEBRA

Full marks: 80 Time: 3 hour

The figures in the margin indicate full marks for the questions

Answer Group A and Group B in separate answer books
Group A: Tensor analysis

- 1. Answer any *four* of the following questions: $4 \times 5 = 20$
 - (a) Define Kronecker delta δ^{i}_{j} and prove that it is a mixed tensor. State its rank and order.
 - (b) Show that every tensor can be expressed in terms of symmetric and a skew-symmetric tensor.
 - (c) Distinguish between a symmetric and an anti symmetric tensor.
 - (d) Write the transformation formula for covariant, contravariant and mixed tensor of rank two.
 - (e) What do you understand by fundamental tensors, associated tensor, and tensor densities?
- 2. Answer any *two* of the following questions $2 \times 5 = 10$
 - (a) Evaluate the Christoffel's symbols of both kinds for spaces, where $g_{ij} = 0$ if $i \neq j$.
 - (b) Calculate the non vanishing Christoffel's symbols corresponding to the metric $ds^2 = (dx^1)^2 + (x^1)^2 (dx^2)^2 + (x^1)^2 sin^2 x^2 (dx^3)^2.$
 - (c) If A^i is a contravariant vector, then to prove that $div A^i = \frac{1}{\sqrt{g}} \frac{\partial}{\partial x^i} (A^i \sqrt{g})$ where $g = |g_{ij}|$.

3. Find the covariant derivative of covariant tensor of second order.

10

Group B: Linear Algebra

- 4. Answer any *four* from the following questions: $4 \times 5 = 20$
 - (a) Let T be a linear operator on V and let $RankT^2 = RankT$ then show that $RangeT \cap KerT = \{0\}$.
 - (b) Find the range, rank, Ker and nullity of the following linear transformation, $T: \mathbb{R}^2 \to \mathbb{R}^3$ such that $T(x_1, x_2) = (x_1, x_1 + x_2, x_2)$.
 - (c) Find the eigenvalues and eigenvectors of $A = \begin{bmatrix} 2 & -1 & 0 \\ 3 & -2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.
 - (d) Determine whether $A = \begin{bmatrix} 2 & -3 \\ 1 & -2 \end{bmatrix}$ is diagonalizable.
 - (e) Let $B = \{u_1, u_2, u_3, ..., u_m\}$ be basis for a subspace U of an n-dimensional vector space V. Show that U is an invariant subspace under the linear transformation $T: V \to V$ if and only if $T(u_i) \in U$ for i = 1, 2, 3, ..., m. Determine whether the

subspace
$$M = span \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 5 \\ 2 \\ 0 \\ 0 \end{bmatrix} \right\}$$
 is invariant under

$$T\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} a+b-d \\ b \\ c+d \\ d \end{bmatrix}.$$

5. Answer any *four* from the following questions:

 $4 \times 5 = 20$

- (a) Let V be an inner product space. Then show $|(u,v)| \le ||u|| ||v||$ for all $u,v \in V$.
- (b) Obtain an orthogonal basis w.r.t. the standard inner product for the subspace of R^3 generated by (1, 0, 3) and (2, 1, 1).
- (c) Let S be an orthogonal set of non-zero vectors in an inner product space V. Then show that S is a linearly independent set.
- (d) A linear transformation $T: V \to V$ is a projection if and only if $T = T^2$.
- (e) Let T be a linear operator on a finite dimensional complex inner product space V. Then prove that $T = T_1 + iT_2$ for some uniquely determined self-adjoint linear operators T_1, T_2 on V.
