2018 ### **MATHEMATICS** ### **MAT 303** ### **ELECTIVE 1** Full Marks: 80 Time: 3 hours # The figures in the margin indicates full marks for the questions: ## Attempt either Group A or Group B ### Group A: Number Theory I | 1. | (a) | Prove that $\frac{21n+4}{14n+3}$ is irreducible for every natural number n . | 5 | |----|-----|--|-----| | | (b) | Show that for any integer a , $a(a^4 + 4)/5$ is an integer. | 5 | | | | or | | | | | Show that the product of any three consecutive integer is divisible | by | | | | 3!. | 5 | | • | (c) | If $(a, b) = 1$, then show that for any integer c , $(ac, b) = (c, b)$. | 5 | | | (d) | If q is the least positive divisor for the composite integer a , then sl | aow | | | | that $q \leq \sqrt{a}$. | 5 | | | | or | | | | | If p is a prime then show that there exists no positive integers a ar | d b | | | | such that $a^2 = pb^2$. | 5 | | 2. | (a) | Show that F_5 is divisible by 641. | 5 | | | | or | | | | | Prove or disprove that F_{18} is composite. | 5 | | | (b) | Show that for $m \neq n, m, n \in \mathbb{N}$, $(F_m, F_n) = 1$. | 5 | | | (c) | Show that the product of the first n Fermat's numbers is $2^{2^n} - 1$. | 5 | | | | 1 P | то |