2018

MATHEMATICS

MAT 304

FUZZY SET THEORY

Full Marks -80 Time – 3 hrs

- 1. Answer any four from the following questions: $5\times4=20$
 - (a) What is fuzzy set? Write the differences between general set and fuzzy set.
 - (b) What is convex fuzzy set? Prove that sum of two convex fuzzy set is convex.
 - (c) What is α -cut and strong α -cut? Let A be a fuzzy set defined by

A=
$$\frac{0.5}{x_1}$$
 + $\frac{0.4}{x_2}$ + $\frac{0.7}{x_3}$ + $\frac{0.8}{x_4}$ + $\frac{1}{x_5}$, find all α -cuts and strong

α-cuts.

(d) Let A, B and C be fuzzy sets defined on the interval [0, 10] of real numbers by the membership grade functions

A(x)=
$$\frac{x}{x+2}$$
, B(x)= 2^{-x} , C(x)= $\frac{1}{1+10(x-2)^2}$

Then find A^C, B^C and C^C.

(e) Let $f: X \rightarrow Y$ be an arbitrary crisp function, then for any $A \in f(X)$, prove that

$$f(A) = \bigcup_{\alpha \in [0,1]} {}_{\alpha+}[f(A)]$$

- 2. Answer any three from the following questions: $10 \times 3 = 30$
 - (a) Let A and B are two fuzzy numbers whose membership functions are given by

$$A(x) = \begin{cases} 0 & \text{if } x \le -1 \text{ and } 3 \le x \\ \frac{x+1}{2} & \text{if } -1 \le x \le 1 \\ \frac{3-x}{2} & \text{if } 1 < x \le 3 \end{cases}$$

And

$$B(x) = \begin{cases} 0 & \text{if } x \le 1 \text{ and } 5 < x \\ \frac{x-1}{2} & \text{if } 1 < x \le 3 \\ \frac{5-x}{2} & \text{if } 3 < x \le 5 \end{cases}$$

Then find A.B and A/B.

- (b) Write the axioms of fuzzy complement function. Give an example of fuzzy complement that satisfies only axiomatic skeleton. Show that every fuzzy complement has at most one equilibrium.
- (c) Show that the fuzzy relation R is defined by the membership matrix $R = \begin{pmatrix} 0.2 & 1 & 0.4 \\ 0 & 0.6 & 0.3 \\ 0 & 1 & 0.3 \end{pmatrix}$ is max-min transitive. Let $Q = \begin{pmatrix} 0.9 & 0.6 & 1 \\ 0.8 & 0.8 & 0.5 \\ 0.6 & 0.4 & 0.6 \end{pmatrix}$ and r = [0.6 & 0.6 & 0.5], solve

the fuzzy relation equation

P • Q=r, using max-min composition.

- 3. Answer any six from the following questions: $5 \times 6 = 30$
 - (a) Let $A \in f(X)$ and $\alpha, \beta \in [0, 1]$, prove that if $\alpha \leq \beta$ then ${}^{\beta}A \subseteq {}^{\alpha}A$ and $^{\beta+}A \subset ^{\alpha+}A$
 - (b) Prove that the standard fuzzy intersection is the only idempotent t-norm.

- (c) Let $f: X \rightarrow Y$ be an arbitrary crisp function. Then for any $A \in$ F(X) and $\alpha \in [0, 1]$, prove with example that $\alpha^{+}[f(A)] \neq f(\alpha^{+}A)$.
- (d) Prove that for all $a, b \in [0, 1]$, $\max(a, b) \le u(a, b) \le u_{\max}(a, b)$, Where u_{max} denotes the drastic union.
- (e) What is fuzzy relation? Describe union and intersection of fuzzy relation with example.
- (f) Let A and B be two fuzzy numbers defined

$$A = \frac{0.2}{[0,1)} + \frac{0.6}{[1,2)} + \frac{0.8}{[2,3)} + \frac{0.9}{[3,4)} + \frac{1}{4} + \frac{0.5}{(4,5]} + \frac{0.1}{(5,6]}$$
 and
$$B = \frac{0.1}{[0,1)} + \frac{0.2}{[1,2)} + \frac{0.6}{[2,3)} + \frac{0.7}{[3,4)} + \frac{0.8}{[4,5)} + \frac{0.9}{[5,6)} + \frac{1}{6} + \frac{0.5}{(6,7]} + \frac{0.4}{(7,8]} + \frac{0.2}{(8,9]} + \frac{0.1}{(9,10]}$$
.

Then find the solution of equation A+X=B.

(g) Let A and B be two fuzzy sets numbers defined by

$$A(x) = \begin{cases} \frac{x+2}{2}, -2 < x \le 0 \\ \frac{2-x}{2}, 0 < x < 2 \\ 0, otherwise \end{cases}$$

$$B(x) = \begin{cases} \frac{x-2}{2}, -2 < x \le 0 \\ \frac{6-x}{2}, 0 < x \le 6 \\ 0, otherwise \end{cases}$$
And

Find the solution of the equation A+X=B.
