2018

MATHEMATICS

MAT 403

ELECTIVE III (NUMBER THERORY II)

Full Marks: 80 Time: 3 hours

The figures in the margin indicate full marks for the questions

1. (a) For
$$n \ge 1$$
, show that $\varphi(n) = \sum_{\substack{d \mid n \\ \text{or}}} \mu(d) \frac{n}{d}$.

For any two positive integers m, n, show that $\phi(mn) = \phi(m)\phi(n)\frac{d}{\phi(d)}$, where d := (m, n).

(b) Show that a multiplicative function f is completely multiplicative if and only if $f^{-1}(n) = \mu(n)f(n)$, $\forall n \ge 1$. 5

For any multiplicative function f, show that $\sum_{d|n} \mu(d)f(d) = \prod_{p|n} (1 - 1)^{n-1}$

f(p), where p is a prime number. 5

(c) Show that the average order of $\varphi(n)$ is $3n/\pi^2$. 5

Show that the set of lattice points visible from the origin has density $6/\pi^2$.

(d) For all $x \ge 1$, show that $\left| \sum_{n \le x} \frac{\mu(n)}{n} \right| \le 1$. Under what condition the equality will hold. 4+1=5

(e) For $n \geq 1$, show that the n^{th} prime p_n satisfies the inequalities $\frac{1}{6}n\log n < p_n < 12(n\log n + n\log\frac{12}{e}).$ 5

Contd...2

5

2. (a) Show that there is exactly $\frac{p-1}{2}$ quadratic residue and $\frac{p-1}{2}$ quadratic residue mod p.

OI

Show that if (p, a) = 1, then $x^2 \equiv a \pmod{p}$ has two solutions.

- (b) If p is an odd prime and a, b be two integers such that (a, p) = 1 and (b, p) = 1. Then show either one of the following

 i. $(\frac{a}{p}) \equiv a^{\frac{p-1}{2}} \pmod{p}$.
 - ii. $a \equiv b \pmod{p} \Rightarrow (\frac{a}{p}) = (\frac{b}{p})$.
- (c) If P(m, n) be a lattice point in the first quadrant and (mn) = 1, then show that there does not exists any lattice point on the line OP, excluding the points O and P.
- (d) Show that the congruence $x^2 \equiv 15 \pmod{1093}$ has no solution.
- 3. For s > 1, show any three of the following

 $5 \times 3 = 15$

5

5

- (a) $\zeta(s) = \prod_{n} \frac{1}{1 p^{-s}}$.
- (b) $\zeta'(s) = -\frac{1}{(s-1)^2} + O(1)$.
- (c) $\frac{1}{\zeta(s)} = \sum_{n=1}^{\infty} \frac{\mu(n)}{n^s}.$
- (d) $\frac{\sigma_{s-1}(m)}{m^{s-1}\zeta(s)} = \sum_{n=1}^{\infty} \frac{c_n(m)}{n^s}$.
- 4. (a) State and prove Euler's pentagonal-number theorem. 2+8=10
 - (b) For each nonnegative integer n, show any one of the following $n(5m+4) = 0 \pmod{5}$
 - i. $p(5m+4) \equiv 0 \pmod{5}$.
 - ii. $p(11m+6) \equiv 0 \pmod{11}$

(Symbols are in their usual meaning.)