2016

MATHEMATICS

PAPER : MTC 203
LINEAR PROGRAMMING AND STATISTICS

(Old Course)
Full Mark: 80
Time: 3 Hrs

Figures in the right hand margin indicate full marks for the question

(Use only one Answer script for both the group)

GROUP-A (Linear Programming)

Attempt all the questions

1. Answer any five from the following

- 2X5=10
- (a) What is Linear Programming? Give the Mathematical formulation of Linear Programming Problem (LPP).
- (b) What is Optimum solution of LPP? Do every feasible solutions of a LPP are always an optimal solution?
- (c) What is Saddle Point. Give the rules for detecting a Saddle point.

- (d) What is a Transportation type problem.
- (e) What is mean by Zero-Sum game.
- (f) Define Pay-off matrix.
- (g) What is a Primial Problem.
- 2. Choose any three from the following

3X3=9

- (a) Write a note on Pure strategy and Mixed strategy.
- (b) Write the dual of the Problem

Min Z =
$$3x_1 + x_2$$

s.t $2x_1 + 3x_2 \ge 2$
 $x_1 + x_2 \ge 1$
with $x_1, x_2 \ge 0$.

- (c) Give any three advantage of linear programming problem.
- (d) Write the cutting plane algorithm.
- (e) Prove that the dual of a dual is Primial Problem itself.
- 3. Answer any three from the following

7X3 = 21

(a) Solve the following system of simultaneous equations by using the

Simplex method

$$x_1 + x_2 = 1$$

 $2x_1 + x_2 = 3$

(b) Show that for any basic feasible solution x_B of a LPP at any iteration of Simplex algorithm, $z_j - c_j \ge 0$ for all the non-basic vectors of A, then x_B is a Optimal solution.

(c) Solve the IPP

Min
$$Z = 3x_1 + 5x_2 + 4x_3$$

s.t
$$2 x_1 + 3 x_2 \le 8$$

 $3x_1 + 5x_2 + 4x_3 \le 15$
 $2 x_2 + 5 x_3 < 10$

$$x_1, x_2, x_3 \ge 0.$$

(d) Find the dual of the following system

$$Min Z_p = x_1 + x_2 + x_{3,}$$

s.t
$$x_1 - 3 x_2 + 4x_3 = 5$$

 $2x_1 - 2x_2 \le 3$
 $2 x_2 - x_3 \ge 5$

 $x_1, x_2 \ge 0$, x_3 is unrestricted in sign.

GROUP-B (Statistics)

Attempt all the questions

1. Answer any five from the following

- 2X5=10
- (a) Give the properties of Classical Probability.
- (b) A bag contains 4 red, 3 green and 5 black balls. If two balls

are drawn at random find the probability that one ball is black and the other is red ball.

- (b) What is discrete universiate distribution.
- (c) Define Expectation of two dimensional Random Variable.
- (d) Define uniform distribution.
- (e) Define moment generating function.
- (f) What the are criteria of good estimator.
- 2. Choose any three from the following

3X3=9

- (a) State and prove Baye's theorem.
- (b) If X is a Bernoulli Random variable then E(X) = p and Var(X) = p(1-p).
- (c) Find the mathematical expectation and variance of the number of success in "x" independent trials with the probability of success in the ith trial

where i = 1,2,3,....,n.

- (d) Give any three properties of χ^2 Distribution.
- (e) Show that in random sampling from a normal population, the sample mean is a consistent mean.
- 3. Answer any three from the following

7X3=21

(a) There are three machines A,B,C which produce respectively 60%, 30% and 10% of the total no.of items of a factory. The percentage of respective defective outputs of these three machines are respectively 2%, 3% and 4%. An item is selected at random and its found to be defective. Find the probability that the item was produced by machin

4

P.T.O.

- (b) If X has a binomial distribution with parameter p and X then
 E(X) = np
 And Var (X) = nq.
- (c) A continuous distribution is given by the density function

$$f(x) = \frac{1}{x\sqrt{2\pi}} e^{-(\frac{1}{2})(\log x)^2}, \text{ for } x > 0$$
$$= 0, \text{ for } x < 0.$$

Find the mean, mode and standard deviation of the distribution.

(d) In 90 throws of a die, face 1 turned 9 times, for face 2 or 3 turned 27 times, face 4 or 5 turns 36 times and 6 turned 18 times. Test at 10% level if the die is honest, it being given that χ^2 for 3 df = 6.25 at 10% level of significance.