2016

MATHEMATICS

PAPER: MTC 201 COMPLEX ANALYSIS & LINEAR ALGEBRA (Old Course)

Full Mark: 80 Time: 3 Hrs

Figures in the right hand margin indicate full marks for the question

(Use separate script for both the groups)

Group -A (Complex Analysis) Marks: 50

1. (a) State and prove the necessary condition for a complex

valued function f(z) is analytic. 7

- (b) Prove that $u = e^{-x}(xsiny ycosy)$ is harmonic function
- 2. Answer any two questions:

 $6 \times 2 = 12$

- (a) State and prove the cauchy's inequality.
- (b) If a>e, use Rouche's theorem to prove that the equation $e^z = az^n$ has n roots inside the circle |z| < 1.
- (c) Evaluate the integral $\int_0^{2\pi} \frac{\cos 2\theta \, d\theta}{5+4\cos \theta}.$

- 3. Obtain the Laurent's series which represent the function $\frac{z^2-1}{(z+2)(z+3)}$ in the region
 - (i) within |z| = 1.
 - (ii) in the annular region between |z| = 2 and |z| = 3.
 - (iii) exterior to |z| = 3.
- 4. What kind of singularity have the following functions: $21/2 \times 2 = 5$
 - (i) $\frac{1}{1-e^z}$ at $z=2\pi i$. (ii) $\frac{1}{\sin z \cos z}$ at $z=\frac{\pi}{4}$.
- 5. The function f(z) has a double pole at z=0 with residue 2, a simple pole at z=1, with residue 2, is analytic at all other finite points of the plane and is bounded as $|z| \to \infty$. If f(2)=5 and f(-1)=2 find f(z).
- 6. (a) State and prove the Schwarz's Reflection Principle.
 - (b) Let f(z) be an analytic function in a region R and suppose that f(z) = 0, at all points on an arc PQ inside R. Prove that f(z) = 0 throughout R.

Group-B (Linear Algebra)

Marks: 30

1. Answer the followings:

$$5 \times 3 = 15$$

(a) Show that the mapping $T: V_3(\mathbb{R}) \longrightarrow V_2(\mathbb{R})$ defined

P.T.O.

- as $T(a_1, a_2, a_3) = (3a_1 2a_2 + a_3, a_1 3a_2 2a_3)$ is a linear transformation from $V_3(R)$ into $V_2(R)$.
- (b) Apply the Gram-schmidt process to the vectors $u_1 = (1,0,1)$, $u_2 = (1,0,-1)$, $u_3 = (0,3,4)$ to obtain an orthonormal basis for $R^3(R)$ with the standard inner product.
- (c) Prove that two vectors a and b in a real inner product space V(R) are orthogonal if and only if $||a + b||^2 = ||a||^2 + ||b||^2$.
- 2. Answer any three parts:

$$5 \times 3 = 15$$

(a) Determine the eigen values and eigen vectors of the matrix

$$\begin{pmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{pmatrix}$$

(b) Show that the minimal polynomial of the real matrix

$$\begin{pmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{pmatrix}$$

is
$$(x-1)(x-2)$$
.

(c) Verify the Cayley-Hamilton theorem for the matrix

$$A = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}.$$
 Also find A^{-1} .

(d) Show that the matrix $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, is not diagonalizable.