2016

MATHEMATICS

MAT 201 FUNCTIONAL ANALYSIS

Full Mark: 80 Time: 3 Hrs

Figures in the right hand margin indicate full marks for the question

1. Answer any four questions:

5X4=20

- (a) Prove that every normed linear space is metric space but every metric space may not be a norm linear space.
- (b) Prove that the linear space C^2 is a Banach space with the norm $\|x\| = (\sum_{i=1}^{n} |x_i|^2)^{1/2}$
- (c) What is equivalent norm? Prove that on a finite dimensional normed linear space any two norms are equivalent.
- (d) Let Y be a proper closed subspace of a normed linear space X. Then prove that for every $\theta \in (0, 1)$ there exists $z \in X$ such that ||z|| = 1 and $||z-y|| \ge \theta$ for $y \in Y$.

- (e) Prove that on finite dimensional normed linear space every linear operator is bounded.
- 2. Answer any two questions

7X2=14

- (a) State and prove open mapping theorem.
- (b) Let N and N' be two normed linear spaces and D be subspace of N. Then show that a linear transformation $T: D \rightarrow N'$ is closed if and only if its graph T_G is closed.
- (c) Show that the mapping $J:N'\to N^*$ such that $J(x)=F_{X}$ for all x in N defines an isometric isomorphism on N into N, where F_X is function on N defined by $F_X(f)=f(x)$, for $f\in N$.
- 3. Let B be a Banach space and N be a normed linear space. If $\{T_i\}$ be a non-empty set of bounded linear transformations from B into N having the property that $\{T_i(x)\}$ is a bounded subset of N for each vector x in B, then show that $\{\|T_i\|\}$ is a bounded set of numbers.

OR

Let B and B' be two Banach spaces. If T is a continuous linear transformation of B onto B', then show that T is an open mapping.

4. Answer any four questions

5X4=20

(a) If x and y be any two vectors in a Hilbert space H, then prove that

$$\|x+y\|^2 - \|x-y\|^2 + i\|x+iy\|^2 - i\|x-iy\|^2 = 4 < x, y > .$$

- (b) Prove that the space C[a, b] is not Hilbert space.
- (c) Show that T: $l^{\infty} \rightarrow l^{\infty}$ defined by Tx= $(x_1, x_2/2, x_3/3,)$ for some x= $(x_1, x_2, x_3,)$ is linear and bounded.
- (d) Let X be an inner product space and $\{u_1, u_2, \dots u_n, u_n, u_n, u_n, u_n\}$ be a countable orthonormal set in X and k_1, k_2, \dots belongs to scalar field K. If $\sum k_n U_n$ converges to some $x \in X$ then show that $\langle x, u_n \rangle = k_n$ for each n and $\sum_{n=1}^{\infty} |k_n|^2 \leq \infty$.
- (e) Let $x_1(t) = t^2$, $x_2(t) = t$, and $x_3(t) = 1$. Orthonormalize x_1, x_2, x_3 in order on [-1, 1] with respect to inner product $\langle x, y \rangle = \int_1^1 x(t)y(t)dt$.

5. Answer any four questions

5X4=20

(a) Prove that for any bounded linear operator T on a Hilbert space H, the operators $\frac{T+T^*}{2}$ and $\frac{T-T^*}{2}$ are self adjoint.

(3)

P.T.O.

(b) Let A and $B \supseteq A$ be nonempty subsets of an inner product space X, then show that

(i)
$$A^{\perp \perp} \supseteq A$$

(ii)
$$A^{\perp} \supseteq B^{\perp}$$

- (c) Show that a subspace Y of a Hilbert space H is closed in H if and only if $Y=Y^{\perp}$
- (d) If T be arbitrary operator on a Hilbert space H and a, b be the scalars such that |a| = |b|, then prove that $aT + BT^*$ is a normal operator.
- (e) Let X be inner product space and Y be a complete subspace of X. Then prove that for any $x \in X$, there exists a unique $y \in Y$ such that ||x-y|| = d(x, y), moreover z=s-y is in Y^{\perp} .

___ × ___