2016

MATHEMATICS

PAPER : MAT 205
TOPOLOGY
(Old Course)

Full Mark: 80 Time: 3 Hrs

Figures in the right hand margin indicate full marks for the question

- 1. (a) Let \mathcal{B} and \mathcal{B}' be bases for the topologies \mathcal{T} and \mathcal{T}' respectively on X. Show that \mathcal{T}' is finer than \mathcal{T} if and only if for each $x \in X$ and $B \in \mathcal{B}$ with $x \in B$, there is $B' \in \mathcal{B}'$ such that $x \in B' \subseteq B$.
 - (b) Let A be a subset in a topological space (X, \mathcal{T}) . Show that $A \cup A^d$ is closed in X. Hence show that $\overline{A} = A \cup A^d$.

$$3 + 2 = 5$$

or

Let X be an infinite set and $f: \mathbb{P}(X) \to \mathbb{P}(X)$ be a function defined by

$$f(A) := \begin{cases} A, & \text{if } A \text{ is finite.} \\ X, & \text{if } A \text{ is infinite.} \end{cases}$$

Show that f satisfies the Kuratowski closure axioms. Hence find the topology induced by f. 3 + 2 = 5

(1)

P.T.O.

(c) Let $f: \mathbb{R} \to \mathbb{R}$ be a function defined by

$$f(x) := \begin{cases} x, & \text{if } x \le 1. \\ x+2, & \text{if } x > 1. \end{cases}$$

Check whether

i. f is \mathcal{U} - \mathcal{U} is continuous.

ii. f is \mathcal{I} - \mathcal{I} is continuous.

- (d) Let f be a continuous open function from a topological space (X, \mathcal{T}) onto another space (Y, \mathcal{T}^*) . Show that T is the quotient topology on Y relative to f.
- Check the first countability for any one of the following space. $5 \times 1 = 5$

i. \mathbb{R} with co-finite topology.

ii. R with co-countable topology.

- (b) Show that second countability implies the Lindel of. Does the converse is true? 4 + 1 = 5
- (c) Show that every open subspace of a separable space is separable. Does the result is true for every subset?

(d) Let us consider the topology \mathcal{T} on \mathbb{N} , consisting of ϕ . 3,..., n}. Show that (\mathbb{N} , \mathscr{T}) is T_0 but not T_1 .

Show that the derived set of a finite set in a T_1 -space is a null set.

(e) Let X be a first countable space. Then show that X is Tspace if every convergent sequence in X has a unique limit point.

- (a) Show that a closed subspace of a compact space is compact. Does the converse is true? 4 + 1 = 5
 - (b) Show that a every compact Hausdorff space is Tychonoff space.

or

Show that every compact regular space is normal. 5

(c) Show that a dense subset of a locally compact Hausdorff space, is locally compact if and only if it is open. 5

Show that in a locally compact Hausdorff space, a subset is locally compact if and only if it is locally closed subset.

(d) Show that a topological space is disconnected if and only if there exists a non-empty clopen proper subset of X. Hence show that \mathbb{R} with lower topology is disconnected.

$$3 + 2 = 5$$

Show that the components of a totally disconnected space X are singleton subset of X.

- 4. (a) Let $\{(X_{\alpha} \mathscr{T}_{\alpha}) | \alpha \in J\}$ be an arbitrary collection of topological spaces and T be a topology on $X := \prod_{\alpha \in I} X_{\alpha}$. Show that T is the product topology if and only if T is the smallest topology for which the projections are continuous.
 - (b) Let F_1 and F_2 be two disjoint closed subsets of $\mathbb{R}_2 \times \mathbb{R}_2$. Can you find a continuous function $f: \mathbb{R}_{x} \times \mathbb{R}_{x} \to [0, 1]$

- such that $f(F_1) = 1$ and $f(F_2) = 0$. Justify your answer. Where \mathcal{L} is the lower limit topology on \mathbb{R} . 2 + 3 = 5
- (c) Let {(X_α T_α) | α ∈ J} be an arbitrary collection of topological spaces and T be the product topology on X:= ∏X_α. Show that product space is compact if and only if each space is compact.

or

Let $(X:=\prod_{\alpha\in J}X_{\alpha})$ be the product space of an indexed family of spaces $\{(X_{\alpha}\mathscr{T}_{\alpha}) \mid \alpha\in J\}$. Show that X is connected if and only if for each $\alpha\in J, X_{\alpha}$ has the corresponding property.