Total No. of printed pages = 11

63/2 (SEM-4) MAT 402 (A,B)

2022

MATHEMATICS

(Theory Paper)

Paper Code: MAT-402 (A)

(Advanced Functional Analysis)

Full Marks - 80

Time - Three hours

The figures in the margin indicate full marks for the questions.

1. Choose the correct option:

- 1×6=6
- (a) Which of the following is not a property of weak topology?
 - (i) Let X be a topological vector space
 (with topology τ) whose dual X* separates points on X.
 - (ii) The X^* topology is called weak topology, τ_w of X.

- (iii) $\tau \subset \tau_w$
- (iv) X_w is locally convex whose dual is also X*
- (b) Find the incorrect statement:
 - (i) In C* algebra if p is non-zero projection then ||p|| ≠ 1.
 - (ii) In C* algebra if u is unitary then $\|\mathbf{u}\| = 1$
 - (iii) A C* algebra is a Banch * -algebra, A such that $||aa^*|| = ||a||^2$, $a \in A$.
 - (iv) C* algebra with indentity element, e: ||e|| = 1
- (c) Let A be a C* algebra then which of the following is true:
 - (i) The set A^+ is equal to $a^*a : a \in A$.
 - (ii) If $0 \le a \le b$ then $||a|| \le ||b||$
 - (iii) If a, b positive invertible elements then $a \le b \Rightarrow 0 \le b^{-1} \le a^{-1}$
 - (iv) All of the above.

- (d) Let X≠0 be a complex normed space and T:D(T)→X a linear operator with domain D(T) ⊂ X. Which of the following is the false statement?
 - (i) $R_{\lambda}(T)$ exists
 - (ii) R₁(T) bounded
 - (iii) $R_{\lambda}(T)$ is defined on a set which is not dense in X.
 - (iv) The complement $\sigma(T) = C \rho(T)$ is spectrum of T, where $\rho(T)$ is resolvent of T.
- (e) Let T:H→H be a positive, bounded, selfadjoint operator a complex Hibert space H, and ≤ is a partial ordering. Then find the incorrect statement:
 - (i) $\langle Tx, x \rangle$ is not real
 - (ii) $T_1 \le T_2$ if and only if $\langle T_1 x, x \rangle \le \langle T_2 x, x \rangle$
 - (iii) T is positive i.e., $0 \le T$ if and only if $0 \le \langle Tx, x \rangle$
 - (iv) $T_1 \le T_2$ if and only if $0 \le T_2 T_1$

- (f) Which of the following is correct?
 - (a) Contration → contractive → non expansive → Lipschitz continuous
 - (b) contractive → contration → non expansive → Lipschitz continuous
 - (c) Lipschitz continuous → contration → contractive → non expansive
 - (d) non expansive → Lipschitz continuous → contraction → contractive.
- 2. Answer the following questions: $2 \times 5 = 10$
 - (a) Define topological vector spaces with example.
 - (b) Distinguish betgween Banch Algebra and C*-Algebra.
 - (c) Define spectrum and resolvent set.
 - (d) Define contraction mapping and give an example.
 - (e) Let E be a set on a topological space X. Then prove that the following properties are equivalent:
 - (i) E is bounded.

- (ii) If $\{x_n\}_{n=1}^{\infty}$ is a sequence in E and $\{\alpha_n\}_{n=1}^{\infty}$ is a sequence of scalars in E such that $x_n \to 0$ as $n \to \infty$ then $a_n x_n \to 0$ as $n \to \infty$.
- 3. Answer any six of the following questions: $5\times6=30$
 - (a) Let Λ be a linear functional on a topological vector space X. Assume $\Lambda x \neq 0$ for some $x \in X$. Then prove that each of the following four properties implies other three:
 - (i) A is continuous
 - (ii) The null space $N(\Lambda)$ is closed
 - (iii) $N(\Lambda)$ is not dense in X.
 - (iv) Λ is bounded in some neighbourhood of V of 0.

(5)

(b) Prove that: "Every locally compact topological vector space X has finite dimension".

- (c) Let (H_1, ϕ_1) and (H_2, ϕ_2) be two representations of a C*-algebra A with cyclic vectors x_1 and x_2 respectively. Then show that there exists a unitary operator $u: H_1 \rightarrow H_2$ such that $x_2 = u(x_1)$ and $\phi_2(a) = u\phi_1(a)u^*$ for all $a \in A$ if and only if $\langle \phi_1(a)(x_1), x_1 \rangle = \langle \phi_2(a)(x_2), x_2 \rangle$ for all $a \in A$.
- (d) Show that : All matrices representing a given linear operator T: X→X on a finite dimensional normed space X relative to various bases for X have the same eigen values.
- (e) If A is a banch algebra in which every non-zero element is invertible then prove that A is the complex field, C.
- (f) Show that : A bounded linear operator $P: H \rightarrow H$ on a Hilbert spece H is a projection if and only if $P^* = P = P^2$
- (g) Let A and B be two subsets of a topological vector space X where A be compact, B be closed and $A \cap B = \phi$. Then prove that 0 has a neighbourhood V such that $(A+V) \cap (B+V) = \phi$.

- (h) If two bounded self-adjoint operator S and T on a Hilbert space H are positive and commute each other. Then show that their product, ST is positive.
- (i) State and prove Banach fixed Point Theorem.
- 4. Answer any *two* of the following questions: 10×2=20
 - (a) State and prove Picards's Existence and Uniqueness Theorem. 2+8
 - (b) Let A be a unital Banach algebra generated by 1 and an element a. Then prove that A is abelian and the map $\hat{a}:\Omega(A)\to\sigma(a)$, $\tau\to\tau(a)$ is homomorphism. Validate this result for $A=l^1(Z)$, the set of all complex-valued function f on Z such that $\|f\|_1=\sum_{n=\infty}^\infty |f(n)|$ is finite, and for any $f,g\in l^1(Z)$ their convolution is $f^*g:z\to\mathbb{C}$ such that $(f^*g)(m)=\sum_{n=-\infty}^\infty f(m-n)g(n)$.

- (iii) Let $T: H \to H$ be a bounded self-adjoint operator on a complex Hilbert Space H. Then show that $\lambda \in \rho(t)$ if and only if $\|T_{\lambda}x\| \ge c\|x\|$; c>0, $x \in H$. $[T_{\lambda}=T-\lambda l]$ 10
- 5. Answer any one of the following questions:

 $14 \times 1 = 14$

- (i) If φ is a linear functional on a Banach Algebra A, such that φ (e) = 1 and φ (x) \neq 0 for every invertible $x \in A$, then show that $\varphi(x,y) = \varphi(x)\varphi(y)$ where $x, y \in A$.
- (ii) Consider a Volterra integral equation: $u(x) = f(x) + \lambda \int_a^y K(x,t) u(t) dt. \text{ Let } f \text{ is } continuous \text{ on } [a,b] \text{ and the kernel } k \text{ is } continuous \text{ on the triangular region } R \text{ is the } xt\text{-plane given by } a \le t \le y \text{ and } a \le x \le b. \text{ Then } prove \text{ that the Volterra integral equation has a unique solution } u \text{ on } [a, b] \text{ for every } \mu.$ Validate the result for $f(x) = x + \frac{1}{5x} \frac{1}{5}$; $K(x,t) = \frac{1}{xt} \text{ and } \lambda = \frac{1}{5} \text{ where, } x \in [1,2].$

10+4

(Theory Paper)

Paper Code: MAT-402(B)

(Dynamical Systems)

Full Marks - 80

Time - Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions:
 - (a) Define dynamical systems. Give four examples of dynamical systems. 1=4=5
 - (b) Define orbit. If $F(x) = x^2 + 1$, find the first five points on the orbit of 0. 1+4=5
 - (c) Find an explicit formula for D²(x) and D³(x).

 Also write down a general formula of Dⁿ(x).

Or

Define tent map. Find an explicit formula for $T^2(x)$ and $T^3(x)$. Sketch the graphs.

.55 63/2 (SEM-4) MAT 402(A,B) (9)

[Turn over

10

- 2. Answer the following questions:
 - (a) Give graphical analysis for
 - (i) $F(x) = \frac{1}{3x}$
 - (ii) F(x) = -2x + 1.

21/2+21/2=5

- (b) Discuss the behavior of the resulting orbits under iterations of d for
 - (i) $x_0 = 0.3$
 - (ii) $x_0 = \frac{1}{14}$

21/2+21/2=5

(c) Write in details about orbit analysis and phase portrait.

Or

Consider $F(x) = x^2 - 1.1$. Find the fixed points of F. Then use the fact that these points are also solutions of $F^2(x) = x$ to find the cycle of prime period 2 for F.

- 3. Answer the following questions:
 - (a) What is stability of a fixed point. How to use T and D for stability analysis of the fixed point (x*,y*).

- (b) Define saddle point, saddle node, unstable node, stable focus and center. 5
- (c) Construct and discuss a phase diagram for the pendulum equation $\ddot{x} + \alpha \sin x = 0$. 10

O

Write in details about Duffing Oscillator.

10

- 4. Answer the following questions:
 - (a) Define Saddle-Node Bifurcation.
 - (b) Write about the Koch Snowflake with diagram. 5
 - (c) Identify the bifurcation for $G_{\mu}(x) = \mu x + x^3$, $\mu = -1,1$.

Or

Define filled Julia Set and Julia Set. Describe the filled Julia Set for $Q_0(z) = z^2$.