Total number of printed pages-7

63/2 (SEM-4) PHY 404

2024

PHYSICS

Paper: PHY 404

(Advanced Condensed Matter Physics-II)

Full Marks: 80

Pass Marks: 32

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions: 1×5=5
 - (a) In diatomic molecule like H_2 atom, the Hamiltonian H for singlet state is
 - (i) -J/2
 - (ii) 3J/2
 - (iii) 3J/4
 - (iv) J/2

- (b) An intrinsically conducting polymer has
 - (i) delocalized n electrons in the polymer backbone
 - (ii) delocalized sigma electrons in the polymer backbone
 - (iii) localized pi electrons in the polymer backbone
 - (iv) delocalized pi electrons in the polymer backbone
- (c) The frequency of the AC current produced when a DC voltage of 5 μ V is applied across the Josephson junction is
 - (i) $2.41 \times 10^8 \ Hz$
 - (ii) 2·41×109 Hz
 - (iii) 2·41×10¹⁰ Hz
 - (iv) $2.41 \times 10^{11} Hz$
- (d) What role does the Ginzburg-Landau parameter (k) play in the Ginzburg-Landau equation?
 - (i) It represents the critical temperature of the superconductor

- (ii) It quantifies the strength of the magnetic field applied to the superconductor
- (iii) It characterizes the type of superconductor (Type I or Type II)
- (iv) It measures the ratio of the penetration depth to the coherence length
- (e) The factors that determine the magnetic behavior of small clusters is
 - (i) atomic arrangement
 - (ii) nearest neighbour distance
 - (iii) Both (i) and (ii)
 - (iv) None of the above
- 2. Answer the following questions: 2×5=10
 - (a) Discuss the indirect exchange and super exchange interaction with examples.
 - (b) Discuss the limitations and challenges associated with the observation of De Hass-van Alphen oscillations in experimental studies.

- (c) Define high-temperature superconductors (HTS) and briefly discuss the distinctions between HTS and conventional superconductors.
- (d) Discuss the vortex state in Type II superconductors and its relevance to their behavior in magnetic fields.
- (e) Explain how spin-dependent scattering contributes to the phenomenon of GMR in magnetic multilayer structures.
- 3. Answer the following questions: (any five)

 5×5=25
 - (a) What is cyclotron resonance? Obtain the expression for resonant frequencies of an electron in magnetic field. 1+4=5
 - (b) Deduce the Heisenberg's Hamiltonian for H₂ molecule and explain whether H₂ is ferromagnetic or antiferromagnetic based on exchange criteria. 4+1=5
 - (c) Define colloidal dispersion and describe the different types of colloids, including sols, gels and emulsions.
 - (d) Discuss the distinctions in entropy and specific heat between the normal state and the superconducting state.

- (e) Show that the AC Josephson current exhibits oscillatory behaviour characterized by a frequency $\omega = \frac{2eV}{\hbar}$.
- superparamagnetism in small ferromagnetic materials. What are the key characteristics of superparamagnetic behavior and how does it differ from typical ferromagnetic behavior? What is blocking temperature? 3+1+1=5
- (g) What does spin diffusion length refer to?

 Explain spin polarization and spin accumulation at interfaces between ferromagnetic and nonmagnetic materials.

 1+4=5
- 4. Answer the following questions: (any four)

 10×4=40
 - (a) (i) Explain the terms 'ferromagnetic spin wave' and 'magnon'.
 - (ii) Obtain the dispersion relation of ferromagnetic spin waves detailing the mathematical steps involved.

7

- (b) (i) Explain the concept of magnetoconductivity and its significance in understanding the electrical properties of materials.
 - (ii) Discuss the key factors influencing the magnetoconductivity in the material and obtain the expression for magnetoconductivity when considering an applied magnetic field aligned along the z-axis. 6
- (c) (i) Discuss the influence of polymer molecular structure on mechanical properties. Explain how factors such as chain length, branching and cross-linking affect polymer stiffness, strength, and ductility.
 - (ii) What are intrinsic conducting polymers? Describe the different types and highlight their advantages.

5

(d) Derive the London equations for superconductors. Explain the physical significance of the London equations in describing the behaviour of superconductors.

8+2=10

(e) What is a superconducting quantum interference device (SQUID) and what are its core components? Discuss the output voltage with respect to applied magnetics flux of a SQUID. Derive the mathematical expressions governing the total current in a DC SQUID.

2+3+5=10