63/1 (SEM-3) CC5/CHMHC3056

2023

CHEMISTRY

Paper: CHMHC3056

(Inorganic Chemistry—II)

Full Marks: 60
Pass Marks: 24

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct answer from the following (any five): 1×5=5
 - (a) Ultra pure metals can be obtained by
 - (i) vapour phase method
 - (ii) parting method
 - (iii) solvent extraction
 - (iv) Van Arkel-de Boer method

(b)	Parting process and Cu from	is	used	to	remove	Ag
	(i) Pb					

- (ii) Ni
- (iii) Au
- (iv) Cr
- (c) CN is
 - (i) hard acid
 - (ii) soft acid
 - (iii) soft base
 - (iv) hard base
- (d) According to HSAB principle hard acids perfer to form bond with
 - (i) hard acids
 - (ii) soft acids
 - (iii) soft bases
 - (iv) hard bases

- (e) For any element to show catenation the valency of the element must be greater or equal to
 - (i) 1
 - (ii) 2
 - (iii) 3
 - (iv) zero
- (f) In fullerene the arrangement of C-atoms in C_{60} is
 - (i) linear
 - (ii) trigonal planar
 - (iii) soccer ball-like
 - (iv) tetrahedral
- (g) The structure of IF₅ is
 - (i) pentagonal bipyramidal
 - (ii) tetrahedral
 - (iii) octahedral
 - (iv) square pyramidal

- Which of the following gases does not form clathrates?
 - (i) Ne
 - (ii) Ar
 - (iii) Kr
 - (iv) Xe
- Mica is the sheet of tetrahedral (i)
 - (i) SiO₄
 - (ii) SiO₃
 - (iii) SiO₂
 - (iv) SiO
- Polysulphates contain sulphates of (i)
 - (i) Mg only
 - (ii) Ca only
 - (iii) K only
 - (iv) Mg, Ca and K

- 2. Answer any five of the following questions: 2×5=10
 - Give one merit and one limitation of Ellingham diagram.
 - (b) Explain the relative Lewis acid strength of BF₃, BCl₃ and Br₃.
 - What is inert pair effect? Give one example.
 - Write the main conditions for S and Pblock elements to form complexes.
 - What are carboranes?
 - What are clathrates? Give conditions to form clathrates.
 - (g) What are Silicones? Give their general formula.
- 3. Answer any five of the following questions: 5×5=25
 - Define hydrometallurgy. How it helps to purify Cu from copper ores? 2+3=5
 - What is HSAB principle? Give its applications with suitable examples in each application. 2+3=5
 - Define the term allotropy. Discuss the various allotropic forms of group 14 and 15 elements. 1+2+2=5

- (d) Describe one method to prepare xenontetra-fluoride. Explain its structure. 2+3=5
- (e) Why is borazine called inorganic benzene? How is it prepared from diborane? Give its action on HCl at 50 °C to 100 °C.
- (f) Describe briefly Van Arkel and de Boer method to refine titanium and zirconium.
- (g) What are Bronsted-Lowry type of acids and bases? Give at least four reactions involving Bronsted-Lowry acids and bases and explain them.

 1+4=5
- (h) Name different oxyacids of phosphorus and chlorine. Give one method of preparation of orthophosphoric acid.
- (i) Describe various sources of noble gases. Give at least four uses, each of neon and helium. 2+3=5
- **4.** Answer any *two* of the following questions: $10 \times 2 = 20$
 - (a) (i) What are Ellingham diagrams?
 Explain its use by carbon as reductant.

(ii)	Describe in	ı de	etail w	ith suita	able	
	examples,	the	chief	modes	of	
	occurrence			based	on	
	electrode potentials.					

6

3

3

4

4

3

- (b) (i) What are silicates? Describe the chemistry of orthosilicates and cyclicsilicates with one example in each case. 2+2+2=6
 - (ii) Describe the preparation and structure of the following interhalogen compounds: 2+2=4

 1. CIF₃
- (c) (i) Classify the following into hard, soft and border line acids and bases:

 Na⁺, Pb²⁺, NH₃, SCN⁻, Br⁻, Co²⁺

2. IC1

- (ii) All Bronsted acids may not be Arrhenius bases. Explain.
- (iii) Why are noble gases inert in nature?
- (d) (i) What are phosphazenes? How are lower polymers obtained? 1+2=3
 - (ii) What are polymers and macromolecules? How do they differ? Give one example.
 - (iii) Write any three characteristics of inorganic polymers.

* * *

24KB-350**/27** 63/1 (SEM-3) CC5/CHMHC3056

5