2017

MCA

Paper : 2.5

COMPUTER ORIENTED NUMERICAL METHODS

Full Marks: 75
Time: 3 hrs

The figures in the margin indicate full marks for the questions

1. Answer the following questions:

 $1 \times 5 = 5$

- a. Which of the following method is iterative to solve the solution of linear equation:
 - (i) Gauss Elimination.
 - (ii) Jacobi
 - (iii) Gauss Jordan
 - None of these.
- b. It the distance between each x is not same in the interpolation, then which of the method is used to find the value of y at given point x.
 - (i) Newton forward formula.
 - (ii) Lagrange's formula.
 - (iii) Newton central forward formula
 - (iv) None of these.
- c. Which of the following formula is not true with respect of interpolation?
 - $(i) Ey_1 = y_{h+1}$
 - (ii) $\nabla = E^{-1}$
 - (iii) $\Delta = E 1$
 - (iv) none of these

- d. $\Delta^2 y_o = ?$
 - (i) $y_2 2y_1 + y_0$
 - (ii) $y_2 + 2y_1 y_0$
 - (iii) $y_2 2 y_0$
 - (iv) $y_2 + 2y_1 + y_0$
- e. Which of the following method is not to solve ordinary differential equation?
 - (i) RK 2nd Order.
 - (ii) Trapezoidal
 - (iii) Predictor-Corrector.
 - (iv) Euler.
- 2. Answer the following questions:

$$2 \times 5 = 10$$

P.T.O.

- (a) Evaluate $\Delta^2(ab^{cx})$
- (b) What do you mean by Newton's general interpolation formula.
- (c) Define operator E and Δ . Show that $E = 1 + \Delta$.
- (d) Match the following:
 - A. Newton Raphson.
- 1. Integration.
- B. Runge kutta
- 2. Root finding.
- C. Gauss-Seidal
- 3. Ordinary differential equation.
- D. Simpson's method
- 4. Solution of system of linear equations.
- (e) Construct forward difference table for the following set of values:

X	-3	-2	-1	0	1	2
f(x)	-2	-4	-4	-2	2	8

- 3. Answer any six question of the following: $6 \times 10 = 60$
 - (a) Given the equation,

$$y'(x) = x + y$$
, with $y(0) = 1$,

- Estimate y(0.4) using Milne-Simpson Predictor-Corrector method. Assume h = 0.25.
- (b) Use Simpson's $\frac{1}{3}$ rules dividing the range into ten equal part's to show that,

$$\int_0^1 \frac{\log(1+x^3)}{1+x^2} = 0.1730 \ .$$

(c) Find the first two derivatives of f(x)at x = 1 from the following table:

X	-2	-1	0	1	2	3	4
f(x)	104	17	0	-1	8	69	272

(d) Given the following table find the value of $e^{0.243}$ and $e^{0.411}$,

X	0.1	0.2	0.3	0.4	0.5
$f(x)=e^x$	1.10517	1.2140	1.34986	1.49182	1.64872

(e) Solve the following systems by using Gauss-Jordan elimination method.

$$5x_1 + 3x_2 + 7x_3 = 4,$$

$$x_1 + 5x_2 + 3x_3 = 2,$$

$$2x_1 + 2x_2 + 10x_3 = 5,$$

(f) Give the following values of x & f(x)as:

X	4	5	7	10	11	13
f(x)	48	100	294	900	1210	2028

Using Newton's interpolation formulae for unequal

intervals, find f(8) and f(15).

(g) A root of equation $xe^x + 1 = 0$ lies in the interval (0.5, 1.0). Determine correct to three decimal places using regular falsi method.
