2018 MCA

MCA: 2.4

GRAPH THEORY

Full Marks: 75

Time: 3 Hour

The figures in the margin indicate full marks for the questions

1. Attempt the following parts:

1x5 = 5

- a. A graph G is called aif it is a connected acyclic graph.
 - i. Cyclic graph
 - ii. Regular graph
 - iii. Tree
 - iv. Not a graph.
- b. A graph with n vertices will definitely have a parallel edge or self loop if the number of edges are,
 - i. Greater then (n-1).
 - ii. Less than n(n-1).
 - iii. Greater than $\frac{n(n-1)}{2}$
 - iv. Less than $\frac{n^2}{2}$.
- c. Graph is a collection of,
 - i. Rows and columns
 - ii. Vertices and edges
 - iii. Equations
 - iv. None of these.
- d. A minimal spanning tree of a graph G is,
 - i. A spanning tree sub-graph.
 - ii. A tree
 - iii. Minimum weights.
 - iv. All of the above.

- e. An undirected graph possesses an Eulerian if and only if it is connected and its vertices are
 - i. All of even degree
 - ii. All of odd degree
 - iii. All of any degree
 - iv. Even in numbers.

2. Attempt the following parts:

2x10=20

- a. Prove that in a graph, the number of vertices of odd degree is even.
- b. Draw a planar representation of the given graph:

- c. Suppose that in a graph of 5 peoples, like A,B,C,D and E, the following pairs of people are acquainted with each other, A & C, A & D, B & C, C & D, C & E. Drawn adjacency matrix for the graph and find the degree of the graph.
- d. Suppose that G is a simple connected planar graph drawn n, so that no edges cross with $n \ge 3$ vertices and e edges and that the graph divides the plane into r regions. Then show that $e \le 3n 6$.
- e. Give example of a graph having Euler's circuit but not Hamiltonian circuit.
- f. Let G = (V, E) be a connected undirected graph. What is the largest possible value for |V| if |E| = 19 and $\deg(v) \ge 4$, $\forall v \in V$.
- g. Define vertex connectivity and edge connectivity of a graph..
- h. What do you mean by chromatic number for a coloring graph?

i. Find all spanning tree of the following graph:

j. Find the in-degree and out-degree of the give graph. Are there any sink and source? Find all simple path from A to C.

3. Attempt any five of the following parts:

4x5 = 20

a. Define eccentricity of the vertex and centre of a graph? Find the centre of the graph of the given vertices.

- b. Prove that a simple graph with n vertices and k components can have at most $\frac{(n-k)(n-k+1)}{n}$ edges.
- c. Using Kruskal's algorithm to find out the minimal spanning tree of the following graph,

. : 6:

- d. Show that for every connected graph has at least one spanning tree.
- e. Show that a graph with n vertices, (n-1) edges and no circuits is connected.
- f. What do you mean by incidence matrix and circuit matrix? Find incidence and circuit matrix from the following graph.

4. Attempt all parts of the following:

6x5 = 30

- a. What do you mean by Euler graph and Hamiltonian circuit. Show that a connected graph G is an Euler graph if and only if all vertices are of even degree.
- b. State and prove Cayley's theorem for counting tree.
- c. What do you mean by chromatic polynomial of a graph? Determine the chromatic polynomial of the following graph,

- d. State and prove five color theorem for planner graph.
- e. What do you mean by connected and regular graph in diagraph. Apply Dijkstra algorithm to find out the shortest path from the vertex a to every other vertices in the following graph.

